
- •1. Общая характеристика веществ в электронике
- •1.1 Электрические свойства веществ. Полупроводники
- •Электрические заряды в полупроводниках
- •Энергетические диаграммы
- •Электропроводность полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Особенности примесных полупроводников
- •1.7 Расчёт концентрации подвижных носителей заряда
- •2. Общие свойства контактов веществ в электронике
- •2.1 Контакты и структуры в электронике
- •2.2 Контактная разность потенциалов
- •2.3 Собственные токи в контактах
- •2.4 Электроёмкость контактов
- •2.5 Электрический и тепловой пробой в контактах
- •3. Контакт металл – полупроводник. Диоды шотки
- •3.1. Основные свойства металло-полупроводниковых контактов
- •3.2. Диоды Шотки
- •4. Контакт полупроводников р- и n- типа
- •4.1. Основные свойства p-n перехода
- •4.2. Основные числовые характеристики p-n перехода.
- •4.3 Вольт-амперная характеристика p-n перехода
- •5. Диоды на основе m-n, p-n переходов
- •5.1 Мощный выпрямительный диод
- •5.2. Импульсные и высокочастотные диоды
- •5.3. Стабилитрон
- •5.4. Варикап
- •5.5. Диоды на основе p-I-n структуры
- •5.6. Свето- и фото-диоды. Солнечные батареи
- •6. Структура металл-диэлектрик-полупроводник.
- •6.1. Основные свойства мдп-структуры
- •6.3 Основные параметры мдп-транзистора
- •6.4. Статические характеристики мдп-транзистора
- •6.6. Арсенид-галлиевый полевой транзистор
- •7.1. Основные свойства биполярного транзистора
- •7.2. Биполярный транзистор в схеме с общей базой
- •7.3. Дрейфовый биполярный транзистор
- •7.3. Биполярный транзистор в схеме с общим эмиттером
- •7.4. Статические характеристики биполярного транзистора
- •8. Инерционные свойства мдп и биполярных транзисторов
- •8.1. Причины инерционности мдп и биполярных транзисторов
- •8.2 Импульсные свойства мдп и биполярных транзисторов
- •8.3 Частотные свойства мдп и биполярных транзисторов
- •9. Igbt транзистор
- •10. Контакт проводник - вакуум. Электронные лампы
- •11. Компьютерное моделирование электронных элементов
- •11.1. Компьютерная модель диода
- •11.2. Компьютерная модель транзистора
- •12. Шумы электронных приборов
5.6. Свето- и фото-диоды. Солнечные батареи
Устройство свето- и фото-диодов в целом одинаково, рис. 21. Одна из
областей их p-n перехода очень тонкая, что позволяет возникающему в переходе свету излучаться в окружающее пространство (светодиод) или позволяет внешнему свету проникать в переход (фотодиод).
В светодиодах используется излучательная рекомбинация, при которой рекомбинация каждой p-n пары порождает квант световой энергии.
Рис. 21
Интенсивная рекомбинация и свечение возможны только при протекании в светодиоде прямого тока от внешнего источника.
Из (2) следует, что длина волны и цвет возникающего света определяются выражением:
λ = hc/Wз, (31)
где h – постоянная Планка, c – скорость света, Wз – ширина запрещённой зоны полупроводника. Согласно (31), цвет свечения определяется шириной запрещённой зоны полупроводника.
Кремниевые диоды излучают в инфракрасном, невидимом глазу диапазоне. Кремниевые светодиоды широко применяются, когда их работа не должна видимым светом мешать человеку, например, в пультах управления. Светодиоды на основе фосфида галлия производят красное свечение, на основе карбида кремния – жёлтое и т.д. Решена проблема получения любого цвета свечения. В частности, три различных светодиода – красный, зелёный и синий решают эту проблему в пикселах светодиодных экранов.
Быстро развивается теория и практика гетеропереходов – p-n переходов с полупроводниками различного типа в p- и n-областях. Им свойственно особенно высокое разнообразие возможных электрических и светотехнических характеристик.
В значительной степени решена проблема высокого к.п.д. светодиодов, который достигает нескольких десятков процентов. Поэтому, а также благодаря исключительно высокой надёжности, светодиоды интенсивно вытесняют лампы накаливания и газонаполненные приборы в осветительной и сигнальной аппаратуре.
В фотодиодах внешний свет проникает в p-n переход и, если выполняется соотношение (31), вызывает в нём генерацию электронно-дырочных пар. Поскольку в переходе имеется собственное электрическое поле, ускоряющее для неосновных носителей, последние разводятся полем в противоположные стороны и, тем самым, увеличивают дрейфовую составляющую тока. Равновесие диффузионного и дрейфового токов нарушается и в режиме с замкнутой внешней цепью в ней появляется фототок. В режиме с разомкнутой внешней цепью на освещённом p-n переходе появляется фото-э.д.с., также возникающая в результате нарушения равновесного состояния. В обоих случаях фотодиод можно использовать для регистрации падающего на него света. В частности, кремниевый фотодиод помещают на управляемых внешним пультом электронных устройствах. Если в пульте применён кремниевый светодиод, энергия квантов его света, согласно (2) и (31), достаточна для генерации электронно-дырочных пар.
Поскольку в освещаемом p-n переходе происходит преобразование световой энергии в электрическую, такие контакты используются в солнечных батареях. При идеально прозрачной атмосфере и в космосе мощность светового потока от Солнца на Земле достигает 1,4 кВт/м2.