
- •1. Общая характеристика веществ в электронике
- •1.1 Электрические свойства веществ. Полупроводники
- •Электрические заряды в полупроводниках
- •Энергетические диаграммы
- •Электропроводность полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Особенности примесных полупроводников
- •1.7 Расчёт концентрации подвижных носителей заряда
- •2. Общие свойства контактов веществ в электронике
- •2.1 Контакты и структуры в электронике
- •2.2 Контактная разность потенциалов
- •2.3 Собственные токи в контактах
- •2.4 Электроёмкость контактов
- •2.5 Электрический и тепловой пробой в контактах
- •3. Контакт металл – полупроводник. Диоды шотки
- •3.1. Основные свойства металло-полупроводниковых контактов
- •3.2. Диоды Шотки
- •4. Контакт полупроводников р- и n- типа
- •4.1. Основные свойства p-n перехода
- •4.2. Основные числовые характеристики p-n перехода.
- •4.3 Вольт-амперная характеристика p-n перехода
- •5. Диоды на основе m-n, p-n переходов
- •5.1 Мощный выпрямительный диод
- •5.2. Импульсные и высокочастотные диоды
- •5.3. Стабилитрон
- •5.4. Варикап
- •5.5. Диоды на основе p-I-n структуры
- •5.6. Свето- и фото-диоды. Солнечные батареи
- •6. Структура металл-диэлектрик-полупроводник.
- •6.1. Основные свойства мдп-структуры
- •6.3 Основные параметры мдп-транзистора
- •6.4. Статические характеристики мдп-транзистора
- •6.6. Арсенид-галлиевый полевой транзистор
- •7.1. Основные свойства биполярного транзистора
- •7.2. Биполярный транзистор в схеме с общей базой
- •7.3. Дрейфовый биполярный транзистор
- •7.3. Биполярный транзистор в схеме с общим эмиттером
- •7.4. Статические характеристики биполярного транзистора
- •8. Инерционные свойства мдп и биполярных транзисторов
- •8.1. Причины инерционности мдп и биполярных транзисторов
- •8.2 Импульсные свойства мдп и биполярных транзисторов
- •8.3 Частотные свойства мдп и биполярных транзисторов
- •9. Igbt транзистор
- •10. Контакт проводник - вакуум. Электронные лампы
- •11. Компьютерное моделирование электронных элементов
- •11.1. Компьютерная модель диода
- •11.2. Компьютерная модель транзистора
- •12. Шумы электронных приборов
3.2. Диоды Шотки
Если qм qп, в m-n переходе преобладает поток электронов из полупроводника в металл, рис. 13,б. В n-области образуется обеднённый слой.
Уменьшение концентрации свободных электронов в обеднённом слое приводит к появлению здесь положительного заряда нескомпенсированных ионов донорной примеси. Заряды в приграничных областях создают собственное электрическое поле с контактной разностью потенциалов
к0 = m – п (19)
где к0 – контактная разность потенциалов в равновесном состоянии, т.е. в отсутствие внешнего напряжения.
Чтобы получить открытое состояние контакта, необходимо подать на него прямое напряжение, плюс (больший потенциал) к m – области, минус (меньший потенциал) к n – области. Свободные электроны n – области начнут заполнять обеднённый слой, контактная разность потенциалов уменьшится, потенциальный барьер понизится:
к = к0 – Uпр (20)
Распределение свободных электронов примет вид рис. 13,а. Высокая концентрация свободных электронов во всех частях контакта обусловит протекание большого дрейфового тока, прямого тока Iпр.
При обратном напряжении
к = к0 + Uобр , (21)
т.е. контактная разность потенциалов и потенциальный барьер возрастут. В обеднённом слое концентрация свободных электронов станет ещё меньше, сам слой расширится. Обратный ток Iобр будет ничтожным.
Поэтому при qм qп m-n переход обладает односторонней проводимостью, т.е. является контактом Шотки.
Аналогичная картина наблюдается в менее распространённом m-p контакте. При qм qp это контакт Шотки, при qм qp – омический контакт.
Вольт-амперные характеристики (ВАХ) омического контакта и контакта Шотки изображены на рис. 14,а и рис. 14,б:
а) б)
Рис. 14
ВАХ контакта Шотки описывается формулой Шокли:
I = I0(eU/T – 1), (22)
Термический потенциал T при комнатной температуре составляет 0,025 В, а прямые напряжения составляют десятые доли В. Потому при прямых (положительных) напряжениях единицей в скобках в формуле (22) можно пренебречь и ВАХ в области прямых напряжений, так называемая прямая ветвь - экспоненциальная. Ток насыщения, или тепловой ток I0 при неизменной температуре – константа, определяющаяся конструкцией и материалом контакта, а также степенью легирования полупроводниковых областей. Является параметром контакта. Этот ток называют тепловым из-за сильной зависимости от температуры. В контактах металл-полупроводник и двух полупроводников этот ток обусловлен дрейфом неосновных носителей через внутреннее поле контакта, которое является для них ускоряющим. Поскольку неосновные носители в примесных полупроводниках появляются за счет генерации (в основном, термогенерации), то и величина этого тока зависит непосредственно от температуры.
При обратных напряжениях протекает незначительный ток I0, а при обратных напряжениях, превышающих напряжение пробоя Uпр, возникает электрический пробой и ток резко возрастает.
Важнейшими достоинствами диодов Шотки являются:
- наименьшие по сравнению с другими диодами напряжения открытого состояния, в пределах 0,2…0,5 В. Это означает, что в диодах Шотки, по сравнению с другими диодами, при одинаковом прямом токе рассеиваемая мощность Pрасс = UпрIпр меньше. Поэтому диоды Шотки отличаются меньшими тепловыми потерями;
- в открытом состоянии ток в них дрейфовый, т.к. его диффузионная составляющая ничтожна. Поэтому у диодов Шотки нет диффузионной ёмкости, емкость чисто барьерная и небольшая, они отличаются высоким быстродействием.