
- •1. Общая характеристика веществ в электронике
- •1.1 Электрические свойства веществ. Полупроводники
- •Электрические заряды в полупроводниках
- •Энергетические диаграммы
- •Электропроводность полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Особенности примесных полупроводников
- •1.7 Расчёт концентрации подвижных носителей заряда
- •2. Общие свойства контактов веществ в электронике
- •2.1 Контакты и структуры в электронике
- •2.2 Контактная разность потенциалов
- •2.3 Собственные токи в контактах
- •2.4 Электроёмкость контактов
- •2.5 Электрический и тепловой пробой в контактах
- •3. Контакт металл – полупроводник. Диоды шотки
- •3.1. Основные свойства металло-полупроводниковых контактов
- •3.2. Диоды Шотки
- •4. Контакт полупроводников р- и n- типа
- •4.1. Основные свойства p-n перехода
- •4.2. Основные числовые характеристики p-n перехода.
- •4.3 Вольт-амперная характеристика p-n перехода
- •5. Диоды на основе m-n, p-n переходов
- •5.1 Мощный выпрямительный диод
- •5.2. Импульсные и высокочастотные диоды
- •5.3. Стабилитрон
- •5.4. Варикап
- •5.5. Диоды на основе p-I-n структуры
- •5.6. Свето- и фото-диоды. Солнечные батареи
- •6. Структура металл-диэлектрик-полупроводник.
- •6.1. Основные свойства мдп-структуры
- •6.3 Основные параметры мдп-транзистора
- •6.4. Статические характеристики мдп-транзистора
- •6.6. Арсенид-галлиевый полевой транзистор
- •7.1. Основные свойства биполярного транзистора
- •7.2. Биполярный транзистор в схеме с общей базой
- •7.3. Дрейфовый биполярный транзистор
- •7.3. Биполярный транзистор в схеме с общим эмиттером
- •7.4. Статические характеристики биполярного транзистора
- •8. Инерционные свойства мдп и биполярных транзисторов
- •8.1. Причины инерционности мдп и биполярных транзисторов
- •8.2 Импульсные свойства мдп и биполярных транзисторов
- •8.3 Частотные свойства мдп и биполярных транзисторов
- •9. Igbt транзистор
- •10. Контакт проводник - вакуум. Электронные лампы
- •11. Компьютерное моделирование электронных элементов
- •11.1. Компьютерная модель диода
- •11.2. Компьютерная модель транзистора
- •12. Шумы электронных приборов
2.5 Электрический и тепловой пробой в контактах
Пробоем называется резкое возрастание тока в диэлектрике или обеднённом полупроводнике при достижении напряжения на таких слоях
значения напряжения пробоя Uпр [2, 3, 6]. В допробойном состоянии, при |U| < |Uпр|, ток ничтожен, так как создаётся движением ничтожного количества подвижных носителей.
Электрический пробой диэлектрического или обеднённого слоя возникает при превышении в нём напряжённости поля некоторой критической напряжённости Екр. При этом напряжение не обязательно большое, так как напряженность поля Е ≈ U/w будет большой и при малых напряжениях, если мала толщина слоя w.
Типичным электрическим пробоем является лавинный пробой. При таком пробое сильное электрическое поле разгоняет свободные электроны до столь значительной скорости, что их кинетической энергии при соударениях с атомами диэлектрика или обеднённого полупроводника хватает для превращения валентных электронов атомов в свободные. Появляются новые свободные электроны, которые также разгоняются электрическим полем и соударяются с атомами. Концентрация свободных электронов и ток резко возрастают.
Лавинный пробой считается обратимым, так как он исчезает при уменьшении напряжения на обеднённом слое.
Тепловой пробой возникает, как правило, вслед за лавинным. Возросший при лавинном пробое ток увеличивает количество выделяющегося тепла, температура материала возрастает. В результате (если отводимая от материала мощность меньше рассеиваемой) усиливается термогенерация подвижных носителей, растёт их концентрация, ток становится ещё больше, температура ещё выше и т.д. Перегрев слоя приводит к его разрушению, поэтому тепловой пробой считается необратимым.
При лавинном пробое исчезает главное полезное свойство диэлектрического или обеднённого слоёв – низкая электропроводность, при тепловом эти слои вообще разрушаются.
* спустя время τ, концентрация пересекших границу контакта в некоторый момент времени носителей уменьшается в e раз, спустя время 2…3τ почти все они рекомбинируют с основными носителями.
3. Контакт металл – полупроводник. Диоды шотки
3.1. Основные свойства металло-полупроводниковых контактов
Контакт металл-полупроводник (m-n или m-p переход), относится к наиболее распространенным в электронике типам контактов. Чаще всего это обычный, омический контакт. Его сопротивление невелико, не зависит от знака и величины приложенного напряжения. Ток в омическом контакте связан с напряжением законом Ома. Такие контакты совершенно необходимы для электрического соединения элементов или их частей друг с другом.
Однако некоторые металлы и полупроводники образуют так называемые контакты Шотки, обладающие односторонней проводимостью. При прямом напряжении Uпр они хорошо пропускают ток (открытое состояние), при обратном напряжении Uобр тока почти нет (закрытое состояние). Такие контакты используются в диодах Шотки и некоторых типах транзисторов.
Характер контакта металл–полупроводник зависит от соотношения работ выхода контактирующего металла qм и полупроводника qп. Если, например, qмqп, будет преобладать поток свободных электронов из металла в полупроводник. При этом в m-n переходе в приграничной области полупроводника образуется избыток свободных электронов, т.е. обогащенный слой, рис. 13,а. В таком виде в контакте свободные электроны имеются во всех его частях, и поэтому он обладает очень маленьким электрическим сопротивлением, т.е. является омическим контактом.
а) б)
Рис. 13
ВАХ омического контакта линейна. Его главным параметром является сопротивление R, которое должно быть минимальным. Оно определяется, главным образом, параметрами полупроводниковой области, сопротивление которой намного больше. Сопротивление этой области и контакта в целом зависит от длины области L, площади её поперечного сечения S и удельного сопротивления ρ. Удельное сопротивление, в свою очередь, зависит от концентрации носителей n и их подвижности µn:
R = ρL/S = L/ µnnS (18)