
- •1. Общая характеристика веществ в электронике
- •1.1 Электрические свойства веществ. Полупроводники
- •Электрические заряды в полупроводниках
- •Энергетические диаграммы
- •Электропроводность полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Особенности примесных полупроводников
- •1.7 Расчёт концентрации подвижных носителей заряда
- •2. Общие свойства контактов веществ в электронике
- •2.1 Контакты и структуры в электронике
- •2.2 Контактная разность потенциалов
- •2.3 Собственные токи в контактах
- •2.4 Электроёмкость контактов
- •2.5 Электрический и тепловой пробой в контактах
- •3. Контакт металл – полупроводник. Диоды шотки
- •3.1. Основные свойства металло-полупроводниковых контактов
- •3.2. Диоды Шотки
- •4. Контакт полупроводников р- и n- типа
- •4.1. Основные свойства p-n перехода
- •4.2. Основные числовые характеристики p-n перехода.
- •4.3 Вольт-амперная характеристика p-n перехода
- •5. Диоды на основе m-n, p-n переходов
- •5.1 Мощный выпрямительный диод
- •5.2. Импульсные и высокочастотные диоды
- •5.3. Стабилитрон
- •5.4. Варикап
- •5.5. Диоды на основе p-I-n структуры
- •5.6. Свето- и фото-диоды. Солнечные батареи
- •6. Структура металл-диэлектрик-полупроводник.
- •6.1. Основные свойства мдп-структуры
- •6.3 Основные параметры мдп-транзистора
- •6.4. Статические характеристики мдп-транзистора
- •6.6. Арсенид-галлиевый полевой транзистор
- •7.1. Основные свойства биполярного транзистора
- •7.2. Биполярный транзистор в схеме с общей базой
- •7.3. Дрейфовый биполярный транзистор
- •7.3. Биполярный транзистор в схеме с общим эмиттером
- •7.4. Статические характеристики биполярного транзистора
- •8. Инерционные свойства мдп и биполярных транзисторов
- •8.1. Причины инерционности мдп и биполярных транзисторов
- •8.2 Импульсные свойства мдп и биполярных транзисторов
- •8.3 Частотные свойства мдп и биполярных транзисторов
- •9. Igbt транзистор
- •10. Контакт проводник - вакуум. Электронные лампы
- •11. Компьютерное моделирование электронных элементов
- •11.1. Компьютерная модель диода
- •11.2. Компьютерная модель транзистора
- •12. Шумы электронных приборов
11.2. Компьютерная модель транзистора
В качестве примера компьютерной модели транзистора рассмотрим модель БТ с n-p-n структурой. Её прототип изображён на рис. 53:
Рис. 53 Рис. 54
Здесь диоды моделируют эмиттерный (ЭП) и коллекторный (КП) переходы. При надлежащем выборе параметров этих диодов можно получить точное воспроизведение входной и выходной характеристик. Однако такая «модель» не отражает главное в процессах в БТ: взаимодействие переходов. В частности, при любом значении входного тока в ЭП выходной ток в КП не появляется.
Поэтому естественным шагом является введение в эквивалентную схему зависимого источника выходного тока αIэ, ток которого пропорционален входному току Iэ, рис. 54.
Такая модель отражает важнейшее свойство БТ: в активном режиме возникает выходной ток, пропорциональный входному току. Обратные токи ЭП и КП игнорируются ввиду их малости в наиболее распространённых кремниевых транзисторах.
Дальнейшим шагом является добавление ещё одного зависимого источника тока αiIк, который необходим в случае инверсного режима, когда входной ток подается в открытый КП, а в закрытом ЭП появляется выходной ток, рис. 55:
Рис. 55 Рис. 56
И хотя инверсный режим не применяется, как малоэффективный (α >> αi) , он иногда возникает в реальных схемах и полноценная модель должна это отражать.
Следующим шагом является учёт ёмкости переходов, что обеспечивается добавлением параллельно диодам полной ёмкости КП СКП и полной ёмкости ЭП СЭП, рис. 56.
Модель пополнится уравнениями, учитывающими то, что ёмкость p – n перехода при прямом напряжении диффузионная, при обратном - барьерная. Та и другая зависят не только от знака приложенного напряжения, но и от его величины.
Дальнейшее уточнение модели связано с необходимостью учёта активного сопротивления эмиттерной области Rэ, базовой области Rб и коллекторной областей Rк, рис. 57. Rэ - сопротивление наиболее легированной области, в связи с чем это сопротивление часто принимается равным нулю. Много большую величину имеет сопротивление базы Rб, в связи с обязательно слабым легированием этой области. Сопротивление Rк учитывают в ключевом режиме, т.к. оно влияет на сопротивление открытого состояния.
Рис. 57 Рис. 58
Поскольку БТ применяется преимущественно в интегральных схемах, между его коллекторным слоем и кристаллом ИС существует p-n переход. Поэтому модель дополняют ещё одним диодом DJ с его барьерной ёмкостью CJ, которые отражают существование этого перехода в интегральной схеме, рис. 58:
Рассмотренная модель получила название модели Эберса- Молла (по имени создателей).
Может оказаться необходимым учёт и других особенностей БТ. Это уточнённые температурные свойства, шумовые свойства, особенности конструкции и размеров. Общее число параметров модели БТ в профессиональных программах компьютерного моделирования электронных схем приближается к 100.
12. Шумы электронных приборов
Напряжения и токи в электронных приборах подвержены случайным изменениям, флуктуациям. Они воспринимаются как шумовая составляющая полезных сигнальных токов и напряжений. В условиях слабых сигналов, например, в протяжённых каналах связи (спутниковая связь, оптоволоконные и кабельные линии связи) шумы часто являются главной причиной ошибок и искажений при передаче информации.
Существуют два основных вида шумов электронных приборов: тепловой шум и дробовый шум.
Тепловой шум возникает вследствие хаотического теплового движения носителей заряда. В любом сечении проводника или полупроводника, в любой отрезок времени, суммарный заряд, перенесённый слева направо отличается от заряда, перенесённого справа налево. Это неустранимое отличие ΔQ означает существование случайного по величине и направлению шумового тока iш.т = ΔQ/Δt. Шумовой ток существует вне зависимости от внешнего напряжения. Он создаёт шумовое напряжение uш.т = iш.тR на любом объекте c активным сопротивлением R. «Шумит» любое сопротивление - сопротивление канала МДП транзистора, сопротивление областей БТ, сопротивление обыкновенного резистора.
Типичная временная диаграмма uш.т изображена на рис. 59.
Рис. 59
Очевидно, что среднее во времени значение ūш.т = 0. Поэтому количественно тепловой шум оценивается среднеквадратичным значением напряжения шума ūш.т2:
ūш.т2 = 4kTRΔf (58)
Здесь k – постоянная Больцмана, T – абсолютная температура, Δf – полоса частот, в которой шум воспринимается.
Из (57) следует, что тепловой шум можно ослабить следующими способами:
- уменьшением температуры электронных устройств или их частей (иногда применяется);
- применением в электронных устройствах элементов с минимальным сопротивлением (применяется);
- уменьшением полосы пропускания канала связи Δf.
Последнее находится в противоречии с потребностью в широкополосных каналах связи, обеспечивающих бóльшую скорость передачи информации (например, широкополосный интернет). Однако в узкополосных, «медленных» каналах достигается лучшее отношение сигнал/шум. Именно поэтому одно фото с далёкой космической станции может предаваться в течение многих часов.
Дробовый шум возникает при протекании тока в различных объектах – транзисторах, диодах, электронных лампах. Так, количество носителей в каждую единицу времени, пресекающих открытый m-n, p-n переход или пространство между анодом и катодом всегда неодинаково. Отличие может быть очень небольшим, может быть, всего на несколько электронов больше или меньше. Тем не менее, это означает, что ток в таких объектах флуктуирует, т.е. имеет дробовую шумовую составляющую iш.д.
Строго говоря, из-за наличия флуктуаций, постоянные токи в электронных элементах невозможны даже при постоянных напряжениях.
Временные диаграммы и подход к количественной оценке дробового шума аналогичны тем, что относятся к тепловому шуму. Среднеквадратичный дробовый шумовой ток вычисляется по формуле:
iш.д2 = 2qIΔf (59)
Здесь q – элементарный заряд, I – ток в объекте.
Уменьшение дробового шума путем уменьшения токов транзисторов сопровождается уменьшением их усиления и возможно только в некоторых пределах. Поэтому, как и в случае теплового шума, главным способом уменьшения проявлений дробового шума является уменьшение Δf.
При компьютерном моделировании шумовых процессов в электронных схемах ко всем сопротивлениям последовательно с ними подключаются источники шумового напряжения. Ко всем контактам (переходам), в которых протекает ток, параллельно подключаются источники шумового тока [1, 5, 6].
СПИСОК ЛИТЕРАТУРЫ
1. Электронные, квантовые приборы и микроэлектроника / Под ред. Н.Д. Фёдорова. – М.,Радио и связь, 1998.
2. Степаненко И.П. Основы микроэлектроники. – М., Сов. радио,1980. – 423 с.
3. Николотов В. И. Физические основы электроники: Учебное Пособие. – М.: Инсвязьиздат, 2003. –91 с.
4. Власов В.П., Каравашкина В.Н. Практикум по курсу «Физические основы электроники» 2015г.
5. Смирнов Ю.А., Соколов С.В., Титов Е.В., Физические основы электроники: Учебное пособие для вузов. – СПб.: Лань, 2013. – 599с.
6. Шишкин Г.Г., Шишкин А. Г., Электроника. Учебник для вузов. – М.: Дрофа, 2009. – 704с.