
- •1. Какие основные элементы и вещества слагают живую клетку?
- •2. Физико-химическая структура днк
- •3. Свойства генетического кода
- •4. Объясните что такое: репликация, транскрипция, трансляция
- •5. Какие мутации не являются материалом для эволюции, почему?
- •12. Свойства генетического материала: дискретность, непрерывность, линейность, относительная стабильность
- •13. Изменчивость: наследуемая (генотипическая, мутационная)
- •14. Изменчивость: ненаследуемая (фенотипическая, модификационная)
- •15. Мутагенные факторы
- •16. Причины мутации
- •17. Разновидности мутаций. Свойства мутаций.
- •18. Роль мутаций в эволюционном процессе
- •19. Популяционная генетика
- •20. Генетические характеристики популяций: наследственная гетерогенность
- •21. Генетические характеристики популяций: внутреннее генетическое единство
- •22. Генетические характеристики популяций: динамическое равновесие отдельных генотипов
КСЕ. Тема 4.
1. Какие основные элементы и вещества слагают живую клетку?
В зависимости от того, в каком количестве входят химические элементы в состав веществ, образующих живой организм, принято выделять несколько групп атомов. Первую группу (около 98% массы клетки) образуют четыре элемента: водород, кислород, углерод и азот. Их называют макроэлементами. Это главные компоненты всех органических соединений. Вместе с двумя элементами второй группы — серой и фосфором, являющимися необходимыми составными частями молекул биологических полимеров (от греч. polys — много; meros — часть) — белков и нуклеиновых кислот, их часто называют биоэлементами.
В меньших количествах в состав клетки, кроме упомянутых фосфора и серы, входят 6 элементов: калий и натрий, кальций и магний, железо и хлор. Каждый из них выполняет важную функцию в клетке. Например, Na, К и Cl обеспечивают проницаемость клеточных мембран для различных веществ и проведение импульса по нервному волокну. Са и Р участвуют в формировании межклеточного вещества костной ткани, определяя прочность кости. Кроме того, Са — один из факторов, от которых зависит нормальная свертываемость крови. Железо входит в состав гемоглобина — белка эритроцитов, участвующего в переносе кислорода от легких к тканям. Наконец, Mg в клетках растений включен в хлорофилл — пигмент, обусловливающий фотосинтез, а у животных входит в состав биологических катализаторов — ферментов, участвующих в биохимических превращениях.
Все остальные элементы — третья группа (цинк, медь, йод, фтор и др.) содержатся в клетке в очень малых количествах. Общий их вклад в массу клетки всего 0,02%. Поэтому их называют микроэлементами. Однако это не означает, что они меньше нужны организму, чем другие элементы. Микроэлементы также важны для живого организма, но включаются в его состав в меньших количествах. Цинк, например, входит в молекулу гормона поджелудочной железы — инсулина, который участвует в регуляции обмена углеводов, а йод — необходимый компонент тироксина — гормона щитовидной железы, регулирующего интенсивность обмена веществ всего организма в целом и его рост в процессе развития.
Все перечисленные химические элементы участвуют в построении организма в виде ионов либо в составе тех или иных соединений — молекул неорганических и органических веществ.
Неорганические вещества, входящие в состав клетки
Вода. Самое распространенное неорганическое соединение в живых организмах — вода. Ее содержание колеблется в широких пределах: в клетках эмали зубов воды около 10%, а в клетках развивающегося зародыша — более 90%. В среднем в многоклеточном организме вода составляет около 80% массы тела.
Роль воды в клетке очень велика. Ее функции во многом определяются химической природой. Дипольный характер строения молекул обусловливает способность воды активно вступать во взаимодействие с различными веществами. Ее молекулы вызывают расщепление ряда водорастворимых веществ на катионы и анионы. В результате этого ионы быстро вступают в химические реакции. Большинство химических реакций представляет собой взаимодействие между растворимыми в воде веществами.
Таким образом, полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества неорганических и органических веществ. Кроме того, в качестве растворителя вода обеспечивает как приток веществ в клетку, так и удаление из нее продуктов жизнедеятельности, поскольку большинство химических соединений может проникнуть через наружную клеточную мембрану только в растворенном виде.
Не менее важна и чисто химическая роль воды. Под действием некоторых катализаторов — ферментов — она вступает в реакции гидролиза, т. е. реакции, при которых к свободным валентностям различных молекул присоединяются группы ОН- или Н- воды. В результате образуются новые вещества с новыми свойствами.
Вода в известной степени является теплорегулятором; за счет хорошей теплопроводности и большой теплоемкости воды, при изменении температуры окружающей среды, внутри клетки температура остается неизменной или ее колебания оказываются значительно меньшими, чем в окружающей клетку среде.
Минеральные соли. Большая часть неорганических веществ клетки находится в виде солей — либо диссоциированных на ионы, либо в твердом состоянии. Среди первых большое значение имеют катионы К-, Na+ Са2+, которые обеспечивают такое важнейшее свойство живых организмов, как раздражимость. В тканях многоклеточных животных кальций входит в состав межклеточного «цемента», обусловливающего сцепление клеток между собой и упорядоченное их расположение в тканях. От концентрации солей внутри клетки зависят буферные свойства клетки.
Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне.
Нерастворимые минеральные соли, например фосфорнокислый кальций, входят в состав межклеточного вещества костной ткани, в раковины моллюсков, обеспечивая прочность этих образований.
Органические вещества входящие в состав клетки
Органические соединения составляют в среднем 20— 30% массы клетки живого организма. К ним относятся биологические полимеры — белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул — гормонов, пигментов, АТФ и многих других. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы — полисахариды; в животных — больше белков и жиров. Тем не менее каждая из групп органических веществ в любом типе клеток выполняет сходные функции.
Биологические полимеры — белки. Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки. В организме человека встречаются 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения они построены всего из 20 различных аминокислот. Соединение двух аминокислот в одну молекулу называется дипептидом, трех аминокислот — трипептидом и т. д., а соединение, состоящее из 20 и более аминокислотных остатков, — полипептидом.
Углеводы, или сахариды, — органические вещества с общей формулой Сn(Н20)m. У большинства углеводов число молекул воды соответствует количеству атомов углерода. Поэтому эти вещества и были названы углеводами.
В животной клетке углеводы находятся в количествах, не превышающих 1—2, иногда 5%. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90% сухой массы (клубни картофеля, семена и т. д.). Углеводы бывают простыми и сложными.
Простые углеводы называют моносахаридами. В зависимости от числа атомов углерода в молекуле моносахариды называют триозами — 3 атома, тетрозами — 4, пентозами — 5 или гексозами — 6 атомов углерода. Из шестиуглеродных моносахаридов — гексоз — наиболее важны глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,08— 0,12%). Пентозы — рибоза и дезоксирибоза — входят в состав нуклеиновых кислот и АТФ.
Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. К дисахаридам относятся пищевой сахар — сахароза, получаемый из тростника или сахарной свеклы, который состоит из одной молекулы глюкозы и одной молекулы фруктозы, и молочный сахар, образуемый молекулами глюкозы и галактозы.
Сложные углеводы, образованные многими моносахаридами, называют полисахаридами. Мономерами таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Полисахариды, как правило, — разветвленные полимеры.
Жиры (липиды) представляют собой соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде, они гидрофобны (от греч. hydor — вода и phobos — страх). В клетках всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами.
Содержание жира в клетке колеблется в пределах 5— 15% от массы сухого вещества. В клетках жировой ткани количество жира возрастает до 90%. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жир служит запасным источником энергии.
Важна роль жиров и как растворителей гидрофобных органических соединений, необходимых для нормального протекания биохимических превращений в организме.
Биологически полимеры - нуклеиновые кислоты. Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития.
Поскольку большинство свойств и признаков обусловлено белками, то понятно, что стабильность нуклеиновых кислот — важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность.
Изучение структуры нуклеиновых кислот, которую впервые установили американский биолог Дж. Уотсон и английский физик Ф. Крик, имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования как отдельных клеток, так и клеточных систем – тканей и органов.
Существуют два типа нуклеиновых кислот: ДНК и РНК.