Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Шиза_коллок_сердце

.pdf
Скачиваний:
7
Добавлен:
24.10.2024
Размер:
16.5 Mб
Скачать

Автоматия сердечной мышцы. Автоматизм — способность сердца сокращаться под влиянием возникающих в нем возбуждений. Ритмическая деятельность сердца происходит благодаря наличию в области ушка правого предсердия ведущего центра автоматизма — синусно-предсердного (синусного) узла. От него по проводящим волокнам предсердий возбуждение достигает атриовентрикулярного узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Здесь возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов). В норме водителем ритма сердца является синусно-предсердный узел; он обладает всеми качествами истинного пейсмекера, а именно:

повышенной по сравнению с другими отделами сердца возбудимостью, чувствительностью к влияниям гуморальной и нервной природы;

повышенная чувствительность к химическим воздействиям

спонтанной ритмической медленной деполяризацией клеточных мембран. Для пейсмекерных клеток характерно:

- наличие фазы МДД, которая плавно переходит в фазу быстрой деполяризации; - у ПД пейсмекерных клеток нет плато реполяризации;

- МП у пейсмекерных клеток ниже (–55–60 мВ), чем МП сократительных кардиомиоцитов

(90 мВ).

5. Амплитудно-временная характеристика ПД рабочего кардиомиоцита, ионный механизм его возникновения и механизм изменения возбудимости во время возбуждения.

6.Автоматизм атипичных кардиомиоцитов и его экспериментальные доказательства. Ионный механизм возникновения автоматизма. Отличие возбудимости и процесса возбуждения в клетках атипичной мускулатуры сердца.

Автоматизм - способность атипичных кардиомиоцитов самопроизвольно, без внешних воздействий генерировать электрические импульсы, вызывающие ритмические возбуждения сердца.

Градиент автоматизма - уменьшение частоты самопроизвольно возникающих электрических импульсов в различных участках проводящей системы сердца в направлении от основания сердца к его верхушке.

Опыт Станниуса - сокращение различных отделов изолированного сердца лягушки с определенным ритмом при наложении лигатур, который доказывает наличие различных центров автоматизма в сердце и явление градиента автоматизма. Предложен в 50-х гг. XIX в. Г.Ф. Станниусом (H.F. Stannius, 1803-1883, немецкий физиолог): 1-я лигатура помещается на границе между венозным синусом и предсердиями; 2-я лигатура - по атриовентрикулярной линии, разделяющей предсердия и желудочки; 3-я лигатура - в нижней трети сердца, в области верхушки.

Автоматия сердечной мышцы. Автоматизм — способность сердца сокращаться под влиянием возникающих в нем возбуждений. Ритмическая деятельность сердца происходит благодаря наличию в области ушка правого предсердия ведущего центра автоматизма — синусно-предсердного (синусного) узла. От него по проводящим волокнам предсердий возбуждение достигает атриовентрикулярного узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Здесь возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов). В норме водителем ритма сердца является синусно-предсердный узел; он обладает всеми качествами истинного пейсмекера, а именно:

• повышенной по сравнению с другими отделами сердца возбудимостью, чувствительностью к влияниям гуморальной и нервной природы;

• повышенная чувствительность к химическим воздействиям

• спонтанной ритмической медленной деполяризацией клеточных мембран.

7.Проводящая система сердца, структура и скорость проведения возбуждения в разных ее отделах. Значение проводящей системы. Факторы, определяющие различную скорость распространения возбуждения в рабочем миокарде и проводящей системе сердца

ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА — совокупность образований атипической мускулатуры (узлов, пучков и волокон), обладающих способностью генерировать импульс возбуждения и проводить его ко всем отделам миокарда предсердий и желудочков, обеспечивая их координированные сокращения. П. с. с. состоит из синоатриального узла, расположенного в правом предсердии в области устьев полых вен; пучков предсердной проводящей системы — Бахмана, Венкебаха и Торела; атриовентрикулярного узла, расположенного на границе предсердий и желудочков; пучка Гиса, его ножек и конечных ветвлений желудочковой проводящей системы — волокон Пуркиньё. Клетки П. с. с.— атипические кардиомиоциты — представляют собой малодифференцированные мышечные клетки сердца, обладающие рядом морфологических и функциональных особенностей. Важнейшая функциональная особенность этих клеток — их способность к автоматии (см. Автоматия сердца). Благодаря этой особенности именно в структурах П. с. с. генерируется ритм сердца (в норме водителем ритма сердца является синоатриальный узел). Способность к автоматии в П. с. с. убывает по направлению от основания к верхушке сердца (см. Градиент автоматии сердца). Скорость проведения возбуждения в различных участках П. с. с. существенно варьирует: в синоатриальном и атриовентрикулярном узлах она мала (0,05—0,2 м/с в синоатриальном узле, 0,02—0,05 м/с в атриовентрикулярном узле), а в волокнах проводящей системы желудочков она достигает 2—4 м/с. Благодаря этому обеспечивается такая хронотопография возбуждения сердца, при которой его насосная функция оптимальна.

8.Сократимость кардиомиоцитов, ее отличия от сократимости скелетных мышц. Оценка изоволюмической и изотонической фаз сокращения миокарда.

Сократимость сердечной мышцы также существенно отличается от сократимости скелетной мышцы.

Во-первых, сердечная мышца в отличие от скелетной подчиняется закону «все или ничего»: сердечная мышца либо не отвечает на раздражение, если оно ниже порогового, либо отвечает максимальным сокращением, если раздражитель достигает пороговой или сверхпороговой силы. Увеличение силы раздражения выше пороговой не ведет к увеличению силы сокращения, как при действии на скелетную мышцу. Это объясняется тем, что скелетная мышца проводит возбуждение изолированно по отдельным мышечным во-локнам, на соседние волокна возбуждение не переходит. У сердечной мышцы возбуждение, возникнув в одном месте, распространяется диффузно по всем кардиомиоцитам, и все они вовлекаются в сокращение.

Во-вторых, у сердечной мышцы более длительный период одиночного сокращения: он примерно соответствует длительности ПД (у предсердий — около 100 мс, у желудочков — 300—400 мс). При увеличении частоты сердечных сокращений продолжительность одного сокращения укорачивается. Если частота сердечных сокращений становится меньше, систола желудочков и предсердий удлиняется.

В-третьих, сердечная мышца в отличие от скелетной не может сокращаться тетанически. Рефрактерная фаза миокарда и экстрасистола Потенциал действия миокарда желудочков длится около 0,3 с (более чем в 100 раз

дольше, чем ПД скелетной мышцы). Во время ПД мембрана клетки становится невосприимчивой к действию других раздражителей, т. е. рефрактерной. Соотношения между фазами ПД миокарда и величиной его возбудимости показаны на рис. 7.4. Различают период абсолютны рефрактерности (продолжается 0,27 с, т. е. несколько короче длительности ПД; период относительны рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения (продолжается 0,03 с), и короткий период супернормальной возбудимости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения. Сокращение (систола) миокарда продолжается около 0,3 с, что по времени примерно совпадает с рефрактерной фазой. Следовательно, в период сокращения сердце неспособно реагировать на другие раздражители. Наличие длительной рефрактерной фазы препятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции. Раздражение, нанесенное на миокард в период расслабления (диастолы), когда его возбудимость частично или полностью восстановлена, вызывает внеочередное сокращение сердца — экстрасистолу. Наличие или отсутствие экстрасистол, а также их характер определяется при регистрации электрокардиограммы

9.Сопряжение возбуждения с сокращением. Ионно-молекулярные механизмы сокращения кардиомиоцитов. Основные виды транспорта кальция в рабочих кардиомиоцитах.

Каждая миофибрилла сердечной (и скелетной) мышцы содержит нитевидные сократительные белки актин и миозин, расположенные таким образом, что актиновые нити находятся в длинных каналах между миозиновыми. В состоянии расслабления актиновые нити не заполняют эти каналы на всем протяжении, а входят лишь частично, несколько выступая из них. Это приводит к увеличению общей длины миофибриллы (рис. 123). Сокращение миофибрилл — это процесс, во время которого актиновые нити втягиваются в глубь промежутков между миозиновыми нитями, что приводит к укорочению миофибриллы. Скольжение актиновых нитей по каналам вдоль миозиновых нитей осуществляется вследствие энзимохимических реакций, запускаемых ионами СА24'. На поверхности молекул белка актина находятся тонкие нити молекул белка тропомиозина, заканчивающиеся головкой, состоящей из молекулы тропонина (рис. 124).

Между толстыми миозиновыми и более тонкими актиновыми нитями существуют поперечные мостики, содержащие АТФ. Ионы Са2^ поступая в окончания тропомиозиновых нитей, активируют тропонин и обеспечивают его способность формировать контакты поверхностей тонких и толстых нитей. При этом происходит распад АТФ и освобождающаяся энергия используется на скольжение нитей относительно друг друга и сокращение миофибрилл. Необходимые для этого ионы Са24' поступают из цистерн саркоплазматического ретикулума, т. е. ячеистой сети каналов, пронизывающих саркоплазму мышеч-

ных клеток. Часть ионов Са2^ инициирующих сокращение миофибрилл, поступает в клетку из межклеточной жидкости по медленным натрий-кальциевым каналам мембраны клеток.

Рис. 124. Схема, иллюстрирующая взаимоотношения между актином, тропомиозином и миозином при мышечном сокращении.

Процесс расслабления миокарда начинается в результате связывания ионов Са^ во внутриклеточных депо (цистернах саркоплазматического ретикулума), а также вследствие переноса ионов Са^ через клеточные мембраны в межклеточную жидкость.

10. Факторы, влияющие на минутный объем сердца. Энергетика сокращений сердечной мышцы.

МОК зависит от возраста, веса, положения тела, от окружающей температуры воздуха и степени физического напряжения. Физиологические факторы, способствующие увеличению минутного объема сердца — физическая работа, нервное возбуждение, обильный прием жидкости, высокая окружающая температура воздуха, беременность. Минутный объем кровообращения равен ударному объему (СО), умноженному на число сердечных сокращений в 1 мин (ЧСС):

СО х ЧСС=МО Минутный объем— это количество крови, выбрасываемое сердцем в аорту или легочную

артерию в течение 1 мин. При наличии соустий между правым и левым отделами сердца это соотношение может изменяться.

Величина минутного объема сердца имеет большое диагностическое значение, так как она наиболее полно характеризует кровоснабжение в целом.

Минутный объем кровообращения зависит от возраста, пола, веса, положения тела, от окружающей температуры воздуха и степени физического напряжения. Физиологические факторы, способствующие увеличению минутного объема сердца - физическая работа, нервное возбуждение, обильный прием жидкости, высокая окружающая температура воздуха, беременность.

К увеличению минутного объема приводит и ряд патологических состояний: эмфизема легких, анемия, базедова болезнь, повышенная температура тела, нейроциркуляторная дистония и др. Уменьшение минутного объема наблюдается в вертикальном положении, при кровопускании, инфаркте миокарда, левожелудочковой недостаточности, слипчивом перикардите, микседеме и др.

Для большей достоверности определение минутного объема сердца проводят в условиях основного обмена.

В норме величина минутного объема, по данным механокардиографического метода, колеблется в пределах от 3 до 6 л. В среднем нормальная величина МО в покое составляет

3,5—5,5 л.

По данным других авторов, величина минутного объема составляет 3—5 и 6—8 л.

При физических нагрузках минутный объем сердца может достигать 18—28 и даже 30 л.

11. Показатели сократительной активности сердца (ударный объем, сердечный выброс, конечно-диастолический и конечно-систолический объемы), их нормальные величины.

Конечный диастолический объём (КДО) - объём крови, находящейся в желудочке в конце диастолы, - в момент, прямо предшествующий систоле. В норме равен 70!20 мл/м2. Конечный систолический объём (КСО) - объём крови, остающийся в желудочке в конце систолы, - в момент прямо предшествующей диастолическому расслаблению сердца. В норме равен 24+-10 мл/м2.

Ударный объём (УО) - объём крови, выбрасываемый левым желудочком в аорту, правым - в лёгочную артерию. Равен разности конечного диастолического и конечного систолического объёмов (УО=КДО-КСО). Средний ударный объём у здорового взрослого человека равен 45+-13 мл/м2. Средняя абсолютная величина ударного объёма равна

84+-17 мл.

Изгоняемая фракция крови (ИФ) - отношение ударного объёма к конечному диастолическому объёму. В отличие от ранее приведённых показателей величина ИФ

отличается высокой стабильностью. В норме равен 0,67+-0,08. Уменьшение ИФ ниже 0,5 всегда свидетельствует о существенных нарушениях сократительной способности сердца.

12.Общая характеристика регуляции деятельности сердца. Способы регуляции сократительной активности.

Деятельностью сердца управляют сердечные центры продолговатого мозга и гипоталамуса, проводя нервные импульсы по симпатическим нервам и парасимпатическим нервам вегетативной нервной системы.

Сердце за счет постоянной нагнетательной функции за сутки выбрасывает в артериальную систему около 10 т крови (если за 1 систолу выбрасывается в аорту 70 мл крови, то при частоте сердечных сокращений 70 в 1 мин минутный объем будет составлять 4,9 л, за 1 час = 4,9 х 60 = 294 л, за сутки около 7–10 тонн, в год около 3.000–4.000 т и за всю жизнь около 280.000–300.000 т. Несмотря на такую огромную работу сердце всегда адекватно реагирует на потребности организма и поддерживает необходимый уровень кровотока. Приспособление работы сердца к изменяющимся потребностям организма обеспечивается за счет ряда регуляторных механизмов, имеющих сложную морфо-функциональную основу. Некоторая часть этих механизмов расположена в самом сердцеэто ВНУТРИСЕРДЕЧНЫЕ регуляторные механизмы. Вторая группа — ВНЕСЕРДЕЧНЫЕ (экстракардиальные) регуляторные механизмы. Функционально эти виды регуляции тесно взаимосвязаны.

13.Виды внутрисердечной регуляции. Миогенная регуляция: зависимость силы сокращения от преднагрузки (закон Франка-Старлинга), ритмо-инотропная зависимость (закон Боудича), зависимость силы сокращения миокарда от постнагрузки (эффект Анрепа). Механизмы, объясняющие эффекты миогенной внутрисердечной регуляции. Понятие об электромеханической обратной связи

Внутриклеточные механизмырегуляции.

1.Миокард состоит из отдельных клеток, соединённых вставочными дисками. В каждой клетке – механизм регуляции синтеза белков, поддерживающий уровень воспроизводства в соответствии с интенсивностью раздражения. При увеличении нагрузки на сердце (регулярная мышечная деятельность) усиливается синтез сократительных белков миокарда и структур, обеспечивающих их деятельность (рабочая гипертрофия миокарда).

2.Гетерометрическая регуляция. Сила сокращения сердца пропорциональна степени его кровенаполнения в диастолу (степени растяжения), т.е. исходной длине его мышечных волокон («закон сердца» Франка-Старлинга). При растяжении миокарда во время диастолы в каждой миофибрилле актиновые нити в большей степени выдвигаются из промежутков между миозиновыми нитями, при этом увеличивается количество резервных мостиков – тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться. В результате сердце перекачивает в артерии то количество крови, которое притекает из вен.

3.Гомеометрическая регуляция – изменение силы сокращений сердца при неменяющейся исходной длине волокон миокарда. Это ритмозависимые изменения силы сокращения.

Если стимулировать полоску миокарда при равном растяжении с увеличивающейся частотой, то наблюдается увеличение силы каждого последующего сокращения («лестница Боудича»). Это связано с повышением внутри миокардиоцита свободного кальция. В момент генерации ПД Са2+через медленные Na+-Ca2+-каналы входит внутрь миокардиоцита. Са2+ - взаимодействует с тропонином и инициирует этим изменение положения тропомиозина на актиновой нити, с которой миозиновые мостики способны вступить в контакт, т.е. инициирует сокращение. Чем больше ионов Са2+, тем больше число взаимодействующих мостиков, тем выше сила сокращения.

Резкое увеличение сопротивления выбросу крови из левого желудочка в аорту приводит к увеличению в определённых границах силы сокращений миокарда (проба Анрепа). Механизм имеет 2 фазы: 1) – при увеличении сопротивления растёт конечный диастолический объём и увеличение силы реализуется по гетерометрическому механизму;

2)– когда конечный диастолический объём стабилизируется, увеличенная сила сокращений поддерживается гомеометрическим механизмом. Внутрисердечные механизмы регуляции.

Обеспечиваются внутрисердечными периферическими рефлексами. Дуга этих рефлексов замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. В этих ганглиях выделено (А.С. Догель, 1899 г.) 3 типа нервных клеток:

1)с короткими дендритами и аксоном, образующим окончание на волокнах миокарда – типичные эфферентные нейроны;

2)с длинными дендритами и длинным аксоном, выходящим за пределы ганглия и заканчивающимся на нейронах в других ганглиях – афферентные нейроны. Дендриты афферентного нейрона образуют рецепторы растяжения на волокнах миокарда и венечных (коронарных) сосудах;

3)с короткими отростками, не выходящими за пределы ганглия – вставочные нейроны. Гетеро- и гомеометрические внутриклеточные механизмы способны лишь увеличивать энергию сердечного выброса. Внутрисердечные рефлексы обеспечивают более сложный уровень регуляции, соответствующий текущим условиям в системе кровообращения.

На фоне низкого кровенаполнения сердца и незначительной величины давления крови в устье аорты и коронарных сосудах, увеличение растяжения миокарда правого предсердия приводит к рефлекторному усилению сокращения миокарда левого желудочка. Переполнение камер сердца кровью вызывает снижение силы сокращения миокарда посредством внутрисердечных рефлексов. Сердце выбрасывает меньшее количество крови. Задержка дополнительного количества крови в полостях сердца снижает диастолическое давление и вызывает снижение притока венозной крови к сердцу. Излишний объём задерживается в венозной системе.

При недостаточности наполнения кровью камер сердца внутрисердечные рефлексы вызывают усиление сокращений миокарда. Желудочки выбрасывают большее количество крови, что способствует усилению притока венозной крови к сердцу.

В нормальных естественных условиях внутрисердечная система нервной регуляции не является автономной. Это – низшее звено иерархии нервных механизмов, регулирующих деятельность сердца.

14.Нервная интракардиальная регуляция. Структура, принципиальная схема организации. Характер влияний.

Интракардиальная регуляция сердечной деятельности - за счёт местных рефлекторных дуг. Опыт: сердце изолируют. В правое предсердие вводится балончик, в который накачивается воздух (объём правого предсердия увеличивается). В итоге изменяется частота сокращения желудочков. Полость сердца изнутри обрабатывается антисептиком. При повторном экстперименте частота сокращения желудочков постоянна, т. к. снижается чувствительность местных афферентных нейронов и поэтому нет местной рефлекторной реакции.

15.Общие представления об экстракардиальных способах регуляции деятельности сердца: нервном и гуморальном. Характер этих влияний.

Внесердечные регуляторные механизмы– это нервная экстракардиальная регуляция. Осуществляется импульсами, поступающими из ЦНС по волокнам блуждающего и симпатических нервов.

Парасимпатические волокна: тела 1-х нейронов, отростки которых составляют блуждающие нервы, располагаются в продолговатом мозге. Заканчиваются в интрамуральных ганглиях сердца. Здесь находятся 2-е нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам.

Симпатические волокна: 1-е нейроны в боковых рогах 5-ти верхних сегментов грудного отдела спинного мозга. Отростки заканчиваются в шейных и верхних грудных симпатических узлах. В этих узлах – 2-е нейроны, отростки которых идут к сердцу. Большая часть отходит к сердцу от звёздчатого узла.

Раздражение блуждающих нервов, идущих к сердцу, тормозит работу сердца вплоть до полной его остановки в диастолу (братья Вебер, 1845 г.). Первый случай обнаружения в организме тормозящего влияния нервов.

При электрическом раздражении перерезанного блуждающего нерва происходит: урежение ЧСС – отрицательный хронотропный эффект; уменьшение амплитуды сокращений – отрицательный инотропный эффект.

При сильном раздражении работа сердца на некоторое время прекращается. В этот период возбудимость сердца понижена – отрицательный батмотропный эффект; проведение возбуждения замедлено – отрицательный дромотропный эффект. Нередко наблюдается полная блокада проведения возбуждения в предсердно-желудочковом узле. При продолжительном раздражении блуждающего нерва сокращения сердца восстанавливаются – «ускользание сердца из-под влияния блуждающего нерва».

16. Особенности влияний блуждающего нерва по сравнению с влияниями симпатического нерва. Характеристика четырех типов влияний экстракардиальных нервов.

Различают четыре типа влияний блуждающего и симпатического нервов на работу сердца: 1)инотропное —на силу сердечных сокращений (инос-сила); 2)хронотропное —на частоту сердечных сокращений (хронос-время); 3)батмотропное —на возбудимость сердечной мышцы; 4)дромотропное —на проводимость импульсов по сердечной мышце.

Впервые тормозное влияние блуждающих нервов на работу сердца было показано братьями Вебер в 1845г. Раздражение периферического конца перерезанного блуждающего нерва приводит к уменьшению амплитуды сердечных сокращений, т.е. к отрицательному инотропному эффекту, урежению сердечных сокращений — отрицательному хронотропному, уменьшению возбудимости и проводимости — отрицательному батмотропному и дромотропному эффектам. Сильное раздражение блуждающего нерва вызывает остановку сердца в диастоле. Механизм отрицательного влияния блуждающего нерва на частоту сердечных сокращений можно представить в виде цепочки следующих друг за другом процессов: стимуляция блуждающего нерва ->выделение в его окончаниях ацетилхолина ->взаимодействие с М-холинорецеп-торами ->увеличение проницаемости мембраны клеток пейсмекера для ионов К+и уменьшение дляCa2+ ->замедление МДД -> увеличение мембранного потенциала ->отрицательный хронотропный эффект. При сильном раздражении блуждающего нерва может возникнуть гиперполяризация клеток синоатриального узла и полная остановка сердца.

При продолжающемся раздражении блуждающего нерва прекратившиеся сокращения могут вновь восстановиться —это феноменускользания сердцаиз-под влияния блуждающего нерва. Отрицательное влияние блуждающего нерва на сердце может быть снято с помощьюатропина —блокатора М-холинорецепторов. Кроме того, ацетилхолин очень быстро разрушается ферментом ацетилхолинэстеразой (АХЭ), поэтому эффект нерва кратковременный.

Существует такое понятие, как тонус вагуса —это постоянное тормозное влияние блуждающего нерва на сердце, особенно в состоянии покоя, т.е. в ночное время («ночь — царство вагуса»). Наличие тонуса блуждающего нерва доказывается полной денервацией сердца, после чего оно будет работать чаще, чем до денервации.

Впервые влияние симпатического нерва на сердце было описано братьями Цион (1867г.). Раздражение периферического конца перерезанного симпатического нерва оказывает на сердце положительный ино-, хроно-, батмо-, дромотропный эффект. При этом цепь процессов такова: стимуляция симпатического нерва -> выделение в его окончаниях норадреналина ->взаимодействие с бета-адренорецепторами на мембране клеток синоатриального узла ->повышение проницаемости дляNa+и Ca2+ ->уменьшение МП ->ускорение МДД ->положительный хронотропный эффект. Положительное влияние симпатической нервной системы на сердце можно уменьшить или устранить с помощью

бета-блокаторов, напримеробзидана.Свое влияние симпатические нервы, в отличие от блуждающего, оказывают не в покое, а при физическом или эмоциональном напряжении, в экстремальной ситуации. При чрезмерной активности симпатической нервной системы могут появиться эктопические очаги возбуждения в сердце, что приведет к возникновению экстрасистол.

И.П.Павлов (1887г.) обнаружил в составе симпатического нерва волокна, раздражение которых увеличивало силу сердечных сокращений, не изменяя при этом их частоту. Эти волокна были названы усиливающим, илитрофическим, нервом,так как стимулировали обменные процессы и питание сердечной мышцы.

В настоящее время стало известно, что при раздражении нервов, иннервирующих сердце, в синаптическую щель, помимо основных медиаторов, выделяются и другие биологически активные вещества, в частности пептиды. Они обладают модулирующим действием в отношении основного медиатора. Так, опиоид-ные пептиды (энкефалины и эндорфины) угнетают эффекты раздражения блуждающего нерва, а пептид дельта-сна усиливает вагусную брадикардию.

17. Характер и молекулярно-ионные механизмы влияний ацетилхолина и норадреналина на автоматизм, проводимость и сократимость миокарда.

Существенное влияние на силу и частоту сердечных сокращений оказывают ионы калия и кальция. Повышение содержания калия в наружной среде (внеклеточный калий) приводит: а) к снижению потенциала покоя вследствие уменьшения градиента концентрации калия, б) к увеличению проницаемости возбудимых мембран для калия (как при действии ацетилхолина на миокард предсердий). Увеличение концентрации калия вдвое, т.е. до 8 ммоль/л (при норме 4 ммоль/л), приводит к незначительной деполяризации и очень слабому повышению возбудимости и скорости проведения, что вызывает подавление гетеротопных очагов возбуждения. При возрастании концентрации калия выше 8 ммоль/л возбудимость, скорость проведения и длительность потенциала действия падают, в результате чего уменьшается сила сокращения, синоатриальный узел перестает функционировать как водитель ритма сердца. Дальнейшее повышение концентрации калия сопровождается резко выраженной брадикардией и остановкой сердца в период диастолы.

Снижение концентрации внеклеточного калия ниже 4 ммоль/л приводит к повышению активности пейсмекера, активируются гетеротопные и эктопические очаги возбуждения. Все это приводит к нарушению ритма сердца (экстрасистолия, мерцание и трепетание предсердий и желудочков) и возможны очень тяжелые последствия вплоть до летального исхода из-за нарушения ритма сердца. Отсюда напрашивается вывод, что как значительное увеличение, так и уменьшение концентрации внеклеточного калия могут вызвать критическое состояние больного (особенно с патологией сердца).

Снижение возбудимости под действием растворов с высокой концентрацией калия (кардиоплегические растворы) используют в хирургии сердца, чтобы вызвать временную его остановку, а кровообращение в этих условиях поддерживается аппаратом искусственного кровообращения. При лечении ряда заболеваний сердца (в том числе аритмий) широко используются препараты (или растворы), содержащие калий. Таким больным назначается специальная диета с повышенным содержанием калия в пищевых продуктах.

Увеличение содержания кальция во внеклеточной жидкости сопровождается увеличением силы и частоты сердечных сокращений, а удаление кальция из внеклеточной жидкости (в эксперименте) вызывает прекращение сокращений сердца. Ряд веществ обладает способностью блокировать вход кальция во время потенциала действия и это сопровождается таким же эффектом, как и удаление кальция из внеклеточной жидкости. Такие вещества получили название антагонисты кальция (например, широко используется в кардиологии верапамил).

Деятельность сердца изменяется при изменении рН крови. Так, слабый ацидоз усиливает, а более выраженный ацидоз угнетает работу сердца. Алколоз сопровождается увеличением силы сокращения сердца.

Таким образом, механизмы регуляции работы сердца многокомпонентны. Вовлечение их в процесс регуляции может иметь как одновременный характер (ряда компонентов), так и последовательный характер. Благодаря этому обеспечивается высокая надежность и адаптируемость сердца к различным физиологическим и экстремальным условиям.

18. Рефлексы, изменяющие работу сердца: рефлекс Бейнбриджа, Геринга, Парина Гольца. Схемы рефлексов.

Рефлекса Бейнбриджа - растяжение устьев полых вен избытком крови - возбуждение механорецепторов полых вен - возбуждение барорецепторов предсердия - импульсы в продолговатый мозг - торможение ядер блуждающих нервов - возбуждение нейронов симпатической нервной системы - увеличение ЧСС и силы сокращений

рефлекс Геринга - увеличение АД - возбуждение барорецепторов каротидного синуса - импульсы по нерву Геринга (ветвь языкоглоточного) - активация депрессорной зоны СДЦ в продолговатом мозге в районе ромбовидной ямки - активация ядер блуждающего нерва (парасимпатической нервной системы) через АХ - эффекты блуждающего нерва: 1) Отрицательный хроно-тропный эффект – уменьшение чсс. 2) Отрицательный ино-тропный эффект – уменьшение амплитуды сокращений. 3) Отрицательный батмо-тропный эффект – понижение возбудимости миокарда 4) Отрицательный дромо-тропный эффект – замедление проведения возбуждения. - уменьшение АД, ударного и минутного объемов крови.

Рефлекс Гольтца — уменьшение ЧСС или даже полная остановка сердца при раздражении механорецепторов органов брюшной полости или брюшины, что учитывается при хирургических вмешательствах в брюшной полости. - раздражение механорецепторов брыжейки - импульсы по чревному нерву в спинной мозг на вставочный нейрон - импульсы по вагусу к ядрам блуждающих нервов - эфферентная импульсация к сердцу

Рефлекс Парина – при повышении давления в малом кругу замедляется сердечный ритм (рецепторы в легочной артерии).

19.Гемодинамика. Организация системы кровообращения. Функциональные различия малого и большого кругов кровообращения.

Гемодинамика — раздел науки, изучающий механизмы движения крови в сердечнососудистой системе. Он является частью гидродинамики раздела физики, изучающего движение жидкостей.Основными параметрами, характеризующими системную гемодинамику, являются: системное артериальное давление, общее периферическое сопротивление сосудов, сердечный выброс, работа сердца, венозный возврат крови к сердцу, центральное венозное давление, объем циркулирующей крови. Движение крови в системе кровообращения определяется двумя силами:

1) давлением, под которым она находится в сосудах; 2) сопротивлением, которое возникает при ее движении в сосудах.

Малый круг кровообращения отвечает за поступление крови в легкие, там кровь отдает углекислый газ и обогащается кислородом. Кровь из малого круга кровообращения возвращается в левое предсердие. Большой круг кровообращения, начинающийся в левом желудочке, обеспечивает транспорт крови по всему телу.

20.Функциональные классификации сосудистой системы. Понятие о податливости (Compliance) кровеносных сосудов. Физиологическое значение разной податливости артериального и венозного отделов сосудистого русла.

С позиций функциональной значимости для системы кровообращения сосуды подразделяются на следующие группы:

1.Упруго-растяжимые — аорта с крупными артериями в большом круге кровообращения, легочная артерия с ее ветвями — в малом круге, т. е. сосуды эластического типа.

2.Сосуды сопротивления (резистивные сосуды) — артериолы, в том числе и прекапиллярные сфинктеры, т. е. сосуды с хорошо выраженным мышечным слоем.

3.Обменные (капилляры) — сосуды, обеспечивающие обмен газами и другими веществами между кровью и тканевой жидкостью.

4.Шунтирующие (артериовенозные анастомозы) — сосуды, обеспечивающие «сброс» крови из артериальной в венозную систему сосудов, минуя капилляры.

5.Емкостные — вены, обладающие высокой растяжимостью. Благодаря этому в венах содержится 75—80% крови.

Податливость сосудистой стенки определяется как изменение объема артерии (альтернатива – площадь сечения, диаметр), соотнесенное с данными изменениями давления. Для сравнения эластичных артерий различного калибра рассчитывают растяжимость – отношение податливости к начальному объему сосуда

Соседние файлы в предмете Физиология человека