
МЭТ л3
.docxМинистерство цифрового развития, связи и массовых коммуникаций Российской Федерации
Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования
МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ
(МТУСИ)
Факультет "Радио и телевидение"
Кафедра "Электроники"
ОТЧЕТ
по дисциплине "Материалы электронной техники"
на тему:
"Исследование металло-полупроводниковых переходов. Вариант 10"
Выполнили
Проверил
Кандидат технических наук, доцент ____________ В.Н. Каравашкина
Москва 2023
ЦЕЛЬ РАБОТЫ
Целью работы является исследование металло-полупроводниковых переходов при использовании различных сочетаний металла и полупроводника. При этом определяются следующие характеристики и параметры:
Тип контакта (омический или Шотки);
Сопротивление омического контакта.
Для контакта Шотки при U = 0 определяются:
Контактная разность потенциалов;
Толщина;
Тепловой ток;
Барьерная емкость.
Краткие теоретические сведения
Контакт металл-полупроводник, как и р-n переход, относится к наиболее распространенным в электронике типам контактов. Чаще всего это обычный, омический контакт, сопротивление которого невелико и не зависит от знака и величины приложенного напряжения. Однако некоторые металлы и полупроводники образуют так называемые контакты Шотки, обладающие, как и р-n переход, односторонней проводимостью. Такие контакты используются в диодах Шотки и некоторых типах транзисторов.
Характер контакта металл–полупроводник зависит от соотношения работ выхода контактирующего металла qϕм и полупроводника qϕп. Если, например, qϕмqϕп, будет преобладать диффузия электронов из металла в полупроводник. При этом в m-n переходе в приграничной области полупроводника образуется избыток свободных электронов, т.е. обогащенный слой, рис. 1. В таком виде в контакте подвижные носители имеются во всех его частях, и поэтому он обладает очень маленьким электрическим сопротивлением. При этом же соотношении qϕмqϕп в m-p переходе также преобладает диффузия электронов из металла в полупроводник. Однако из-за рекомбинации электронов с дырками в р-области образуется не обогащенный, а обедненный слой с очень низкой концентрацией подвижных носителей, т.е. с большим сопротивлением. Уменьшение концентрации основных носителей приводит к появлению нескомпенсированных отрицательных ионов акцепторной примеси. Их заряд, вместе с положительным зарядом ионов в приграничной части m-области, образует два слоя зарядов, создающих собственное поле m-p перехода. Как и в р-n переходе, собственное поле обуславливает равновесие диффузии и дрейфа и «перемешивания» носителей не происходит.
Рис. 1 Металло-полупроводниковые переходы при qϕм qϕп
Аналогично, при qϕм qϕп в m-n переходе образуется обедненный слой, а в m-p – обогащенный. Поэтому в этом случае m-n переход – выпрямляющий (Шотки), а m-p – омический.
Рис.2. Металло-полупроводниковые переходы при qϕм qϕп
В реальном металло-полупроводниковом переходе обычно существует еще один слой зарядов – на поверхности полупроводника (поверхностный заряд). Он возникает из-за дефектов кристаллической решетки полупроводника в его поверхностном слое и из-за захвата поверхностью посторонних акцепторных и донорных примесей. Поверхностный заряд может сильно влиять на электрические характеристики перехода, вплоть до изменения самого характера контакта (омический или Шотки). Поэтому диоды Шотки получили распространение намного позже р-n диодов, когда была создана технология, обеспечивающая высококачественный контакт металла с предельно чистой и бездефектной поверхностью полупроводника. Только у таких переходов контактная разность потенциалов ϕк0 близка к идеализированному значению
ϕк0 = ϕm – ϕп (1)
В настоящей работе металло-полупроводниковый переход полагается идеальным, описывающимся уравнением (1).
Если контакт омический, т.е. предназначен для подключения к полупроводниковой области, его наиболее важным параметром является сопротивление R. У такого контакта сопротивление практически не зависит от сопротивления m-области и обогащенного слоя. Поэтому R омического контакта определяется размерами и параметрами нейтральной части полупроводника:
L
R ≅ –––––––, (2)
qSN
где L и S – толщина и площадь поперечного сечения нейтрального слоя, и N – коэффициент подвижности и концентрация примеси в полупроводниковой области.
В случае контакта Шотки, когда используются его нелинейные свойства, важнейшими параметрами являются:
1. Контактная разность потенциалов в отсутствие внешнего напряжения ϕк0, (1). Её величина примерно соответствует значению прямого напряжения Uпр, при котором собственное поле перехода и обедненный слой практически исчезают и возникает большой прямой ток. Uпр определяет тепловые потери Pрасс = Uпр ⋅ Iпр и к.п.д. выпрямителей с диодами Шотки. По этим параметрам они значительно превосходят кремниевые р-n диоды.
2. Тепловой ток I0, определяющий масштаб идеализированной ВАХ:
I = I0(eU/ϕT – 1) , (3)
I0 = S⋅A⋅T2⋅e-ϕk0/ϕT , (4)
где А – константа, зависящая от типа полупроводника, Т – абсолютная температура, ϕT = kT/q – термический потенциал.
3. Толщина перехода L, от которой зависит напряженность поля в переходе E ≅ U/L и поэтому – напряжение пробоя. Так как концентрация подвижных носителей в металле и полупроводнике высокая, толщина перехода определяется практически только толщиной обедненного слоя. В отсутствие внешнего напряжения толщина идеализированного контакта Шотки определяется аналогичным для р-n перехода выражением:
(5)
4. Барьерная емкость Cб, определяющая частотные и импульсные свойства контакта Шотки. В отсутствие внешнего напряжения, как и для р-n перехода,
Процессы в контакте Шотки и в р-n переходе обнаруживают значительное сходство (наличие собственного электрического поля и обедненного слоя, вид идеализированной ВАХ и другое). Имеются, однако, существенные отличия, определяющие важные преимущества диодов Шотки:
– в открытом контакте Шотки не происходит образования диффузионного заряда неосновных носителей, как в р-n переходе. Поэтому у диодов Шотки нет диффузионной емкости, их частотные и импульсные свойства потенциально много лучше;
– в диодах Шотки можно получить значительно меньшие напряжения открытого состояния по сравнению с кремниевыми р-п диодами. Поэтому тепловые потери в диодах Шотки значительно меньше.
В первом задании требуется ввести в программу, представленную на рисунке 1, исходные значения для типа материала Pt и типа полупроводника Ge. После чего произвести расчёт при помощи данной программы и полученные данные ввести в таблицу 1.
Рисунок 1 – Пример расчётов программы
Рисунок 2- результаты исследования
ВЫВОД
В ходе работы были изучены металло-проводниковые переходы с использованием металла платина и полупроводника германия. По результатам расчётов были сделаны следующие выводы: при увеличении концентрации примеси сопротивление омической связи сопротивление уменьшается; при уменьшении концентрации примеси увеличивается толщина перехода; при уменьшении площади перехода уменьшается барьерная ёмкость перехода.