- •Основные задачи общей метрологии.
- •Статистическая взаимосвязь. Определение и примеры. Корреляционная взаимосвязь.
- •Расчет основных статистических характеристик. Характеристика показателей рассеивания.
- •Понятие и классификация тестов.
- •Правила выбора коэффициента взаимосвязи.
- •Систематические и случайные ошибки измерений. Способы устранения систематической погрешности.
- •Понятие об измерениях. Требования к спортивным измерениям.
- •Алгоритм выбора критерия для сравнения средних арифметических по данным малых выборок.
- •Варианты тестирования при оценке физической подготовленности.
- •Корреляционное поле. Порядок построения, анализ изображения.
- •Характеристика графических способов представления результативности соревновательной деятельности.
- •Что называют оценкой? Учебные и квалификационные оценки.
- •Значение спортивной метрологии и ее место среди других учебных дисциплин
- •Контроль за тактикой. Понятие элементов тактики и тактических вариантов.
- •Какие устройства используются для измерения силовых качеств?
- •Свойства кривой нормального распределения.
- •Спортивная метрология как научная дисциплина. Предмет спортивной метрологии.
- •Основные этапы создания программы комплексного контроля.
- •Как оценивается достижение спортсменов в комплексе тестов?
- •Основными направлениями исследования соревновательной деятельности.
- •Контроль за технической подготовленностью. Определение сравнительной эффективности техники.
- •Понятие статистической гипотезы. Примеры статистических гипотез
- •Закон распределения результатов измерений. Характеристика закона Гаусса.
- •Что называют силовыми качествами? На какие группы они делятся?
- •Типы шкал оценок.
- •Характеристика количественных показателей тактического мастерства.
- •Инструментальные методы контроля за тактическим мастерством.
- •Нормы: сопоставительные, индивидуальные, должные.
- •Основные задачи оценивания.
- •Что является целью комплексного контроля?
- •Контроль за технической подготовленностью. Определение абсолютной эффективности техники.
- •Основные задачи корреляционного анализа.
- •Коэффициент корреляции Браве-Пирсона и его свойства.
- •Условия пригодности норм.
- •Контроль за технической подготовленностью. Объем техники.
- •Требования к двигательным тестам.
- •Контроль за технической подготовленностью. Разносторонность техники.
- •Характеристика критерия Шапиро и Уилка.
- •Функциональная взаимосвязь. Определение и примеры.
- •Основные этапы проверки статистических гипотез.
- •Контроль за технической подготовленностью. Определение реализационной эффективности техники.
- •Что такое шкала оценок? Какими способами она задаётся?
- •Направленность взаимосвязи.
- •Принципы проверки статистической гипотезы.
- •Правило трех сигм и его практическое значение.
- •Шкала измерений. Характеристика шкалы интервалов.
- •Шкала измерений. Характеристика шкалы наименований.
- •Расчет основных статистических характеристик. Характеристика положения.
- •Шкала измерений. Характеристика шкалы порядка.
- •Случайное событие, случайная величина, вероятность.
- •Теоретическое и эмпирическое распределение.
- •Генеральная и выборочная совокупность.
- •Шкала измерений. Характеристика шкалы отношений.
- •Эмпирические ряды распределения и их свойства.
- •Единицы измерений. Система си
- •Точность измерений. Виды погрешностей.
Коэффициент корреляции Браве-Пирсона и его свойства.
Коэффициент корреляции Браве-Пирсона применим в том случае, если измерение значений исследуемых признаков производятся в шкале отношений или интервалов и форма зависимости является линейной. Коэффициент корреляции характеризует только линейную взаимосвязь (степень ее тесноты). Линейная взаимосвязь двух случайных величин состоит в том, что при увеличении одной случайной величины другая случайная величина имеет тенденцию возрастать (убывать) по линейному закону.
Для вычисления коэффициента корреляции Браве-Пирсона используется формула:
,
либо
где x и y – средние, а S и Y стандартные отклонения, рассчитанные по двум выборкам.
Рассчитанный коэффициент корреляции является выборочным, так как он определен для ограниченной совокупности, являющейся выборкой из генеральной совокупности. Поэтому делать вывод о существовании корреляции в генеральной совокупности только исходя из его значения, особенно если его модуль не очень близок к 1, преждевременно. Необходимо проверить статистическую значимость обнаруженной корреляции. Определение статистической значимости коэффициента корреляции осуществляется с помощью критерия Стьюдента.
Это параметрический парный коэффициент корреляции. Его вычисление возможно только в том случае, если измерения проводились с использованием равномерной шкалы (в физических единицах – в шкале интервалов или в шкале отношений) и распределение значений варьирующего признака в сопоставляемых факторах допустимо отличается от нормального. Этот коэффициент корреляции мощнее коэффициента корреляции по Спирмену, т.е. он более точно характеризует связь между факторами. Значения r могут находиться в лишь интервале от -1 до +1. Знак при r указывает на направленность зависимости («+» - прямая, «-» - обратная), а его абсолютное значение показывает тесноту (силу) связи (зависимости) между факторами.где ΣXY — сумма произведений данных из каждой пары; n-число пар; X — средняя для данных переменной X; Y— средняя для данных переменной Y Sx — стандартное отклонение для распределения х; Sy — стандартное отклонение для распределения у.
Условия пригодности норм.
Нормы составляются для определенной группы людей и пригодны только для этой группы. Пригодность норм только для той совокупности, для которой они разработаны, называется релевантностью норм. Другая, характеристика норм — репрезентативность. Она отражает их пригодность для оценки всех людей из генеральной совокупности (например, для оценки физического состояния всех первоклассников города Москвы). Репрезентативными могут быть только нормы, полученные на типичном материале. Третья характеристика норм — их современность. Известно, что результаты в соревновательных упражнениях и тестах постоянно растут и пользоваться нормами, разработанными давно, не рекомендуется. Некоторые нормы, установленные много лет назад, воспринимаются сейчас как наивные, хотя в свое время они отражали действительную ситуацию, характеризующую средний уровень физического состояния человека.
