Защита объектов транспорта и хранения нефти и газа от коррозии 1
.pdfПростейший медно-цинковый гальванический элемент Вольта (рис. 1) состоит из двух пластин (электродов):
цинковой 2 (катода) и медной 1 (анода), опущенных в электролит 3, представляющий собой водный раствор серной кислоты H2S04. При растворении серной кислоты в воде происходит процесс электролитической диссоциации, т. е.
часть молекул кислоты распадается на положительные ионы водорода H2+ и отрицательные ионы кислотного остатка
S04-. Одновременно происходит растворение цинкового электрода в серной кислоте. При растворении этого электрода положительные ионы цинка Zn+ переходят в раствор и соединяются с отрицательными ионами SO4кислотного остатка,
образуя нейтральные молекулы сернокислого цинка ZnS04.
При этом на цинковом электроде будут скапливаться оставшиеся свободные электроны, вследствие чего этот электрод приобретает отрицательный заряд. В электролите же образуется положительный заряд ввиду нейтрализации части отрицательных ионов S04. Таким образом, в пограничном слое между цинковым электродом и электролитом возникает некоторая разность потенциалов и создается электрическое поле, которое препятствует дальнейшему переходу положительных ионов цинка в электролит; при этом растворение цинкового электрода прекращается. Медный электрод практически не растворяется в электролите и приобретает тот же положительный потенциал, что и электролит.
Разность потенциалов медного Сu и цинкового Zn электродов при разомкнутой внешней цепи представляет собой э. д. с.
Е рассматриваемого гальванического элемента.
Э. д. с, создаваемая гальваническим элементом, зависит от химических свойств электролита и металлов, из которых выполнены электроды. Обычно подбирают такие комбинации металлов и электролита, при которых э. д. с.
наибольшая, однако почти во всех применяемых элементах она не превышает 1,1 —1,5 В.
10
Консорциум « Н е д р а »
При подключении к электродам гальванического элемента какого-либо приемника электрической энергии (см.
рис. 1) по внешней цепи начнет протекать ток I от медного электрода (положительный полюс элемента) к цинковому
(отрицательный полюс). В электролите в это время начнется движение положительных ионов цинка Zn+ и водорода Н2+
от цинковой пластины к медной и отрицательных ионов кислотного остатка S04от медной пластины к цинковой. В
результате нарушится равновесие электрических зарядов между электродами и электролитом, вследствие чего в электролит с катода снова начнут поступать положительные ионы цинка, поддерживая на этом электроде отрицательный заряд; на медном же электроде будут осаждаться новые положительные ионы. Таким образом, между анодом и катодом все время будет существовать разность потенциалов, необходимая для прохождения тока по электрической цепи.
Рис. 1 - Устройство медно-цинкового гальванического элемента
11
Консорциум « Н е д р а »
4.1Поляризация
Рассмотренный гальванический элемент Вольта не может длительно работать вследствие возникающего в нем вредного явления поляризации. Сущность этого явления заключается в следующем. Положительные ионы водорода Н2+, направляющиеся к медному электроду 1, взаимодействуют с имеющимися на нем свободными электронами и превращаются в нейтральные атомы водорода. Эти атомы покрывают поверхность медного электрода сплошным слоем
4, что ухудшает работу гальванического элемента по двум причинам. Во-первых, между слоем водорода и электролитом возникает дополнительная э. д. с. (э. д. с. поляризации), направленная против основной э. д. с. элемента, поэтому его результирующая э. д. с.
Е уменьшается. Во-вторых, слой водорода отделяет медный электрод от электролита и препятствует подходу к нему новых положительных ионов. При этом резко возрастает внутреннее сопротивление гальванического элемента.
Для борьбы с поляризацией во всех гальванических элементах вокруг положительного электрода располагают специальные вещества —деполяризаторы, которые легко вступают в химическую реакцию с водородом. Они поглощают подходящие к положительному электроду ионы водорода, не позволяя им осаждаться на этом электроде.
Промышленность выпускает гальванические элементы различных типов (с различными электродами и электролитами), имеющие разное конструктивное выполнение. Наиболее распространены угольно-цинковые элементы,
в которых угольный и цинковый электроды погружены в водный раствор хлористого аммония (нашатыря) или поваренной соли, а в качестве деполяризатора применяется перекись марганца.
12
Консорциум « Н е д р а »
Макет космического корабля «Восток-1» в павильоне «Космос» на ВДНХ. За ним — цитата К. Э. Циолковского:
«Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчёт. И уже в конце концов исполнение венчает мысль»
4.2Сухие элементы
Разновидностью гальванического элемента является сухой элемент (рис. 2), применяемый в батареях карманных электрофонарей, радиоприемниках и пр. В этом элементе жидкий электролит заменен тестообразной массой, состоящей из раствора нашатыря, смешанного с древесными опилками и крахмалом, а цинковый электрод выполнен в виде цилиндрической коробки, используемой в качестве сосуда, в котором помещают электролит и угольный электрод. Для отвода газов, образующихся при работе элемента, в нем предусматривают газоотводную трубку.
4.3Емкость
Способность химических источников тока отдавать электрическую энергию характеризуется их емкостью. Под емкостью понимают количество электричества, запасенного в гальванических элементах или аккумуляторах. Емкость измеряется в ампер-часах. Номинальная емкость химического источника тока равна произведению номинального
(расчетного) разрядного тока (в амперах), отдаваемого химическим источником тока при подключении к нему нагрузки,
на время (в часах) до того момента, пока его э. д. с. не достигнет минимально допустимого значения. При длительной работе количество электроэнергии, которое может отдать гальванический элемент, уменьшается, так как постепенно расходуются имеющиеся в нем активные химические вещества, обеспечивающие возникновение э. д. с; при этом уменьшаются э. д. с. элемента и его емкость и возрастает его внутреннее сопротивление.
Гальванический элемент обладает номинальной емкостью только в том случае, если после его изготовления прошло сравнительно небольшое время. Емкость гальванического элемента постепенно уменьшается, даже если он не отдает электрической энергии (после 10—12 месяцев хранения емкость сухих элементов уменьшается на 20—30 %). Это
13
Консорциум « Н е д р а »
объясняется тем, что химические реакции в таких элементах протекают непрерывно и запасенные в них активные химические вещества все время расходуются.
Уменьшение емкости химических источников тока с течением времени называются саморазрядом. Емкость гальванического элемента снижается также при разряде его большим током.
Рис. 2 - Устройство сухого угольно-цинкового гальванического элемента: 1—газоотводная трубка; 2— смоляная заливка; 3 — деполяризатор; 4 — угольный электрод; 5 — картонный футляр; 6 — тестообразная паста (сухой электролит); 7 — цинковый электрод
14
Консорциум « Н е д р а »
Рисунок 3 - Схема движения заряженных частиц при работе медно - цинкового гальванического элемента.
5.Электролиз
Электролиз – это совокупность процессов, протекающих в растворе или расплаве электролита, при пропускании через него электрического тока. Электролиз является одним из важнейших направлений в электрохимии.
Электрохимия принадлежит к числу тех немногих наук, дата рождения которых может быть установлена с высокой точностью. Это рубеж XVIII и XIX веков, когда благодаря знаменитым опытам итальянского физиолога Л. Гальвани и созданию итальянским физиком А. Вольта в 1799 г. "вольтова столба" - первого в истории человечества химического источника тока -были сформулированы проблемы, решение которых определило основные задачи электрохимии. "Без химии путь к познанию истинной природы электричества закрыт" - сказал М.В. Ломоносов. И,
действительно, как бы следуя словам великого ученого, создавалась и развивается наука – электрохимия.
15
Консорциум « Н е д р а »
Еще в начале позапрошлого столетия было установлено, что при прохождении электрического тока через водные растворы солей происходят химические превращения, приводящие к образованию новых веществ. В результате этого, в
начале прошлого века возникло научное направление по изучению электрохимических процессов в растворах и расплавах веществ – электрохимия. К концу семидесятых годов оно разделилось на два самостоятельных раздела – ионику, изучающую явления электропроводности и движения заряженных частиц под воздействием электрического поля, и электродику, изучающую явления происходящие непосредственно на поверхности электродов, когда через границу электрод-раствор (расплав) протекает электрический ток. Химические превращения, происходящие при воздействии электрического тока на вещества, называются электролитическими.
6.Характеристика процесса электролиза
Электролиз представляет собой довольно сложную совокупность процессов, к которым относятся: миграция ионов
(положительных к катоду, отрицательных к аноду), диффузия ионов, разряжающихся на электродах, электрохимические реакции разряда ионов, вторичные химические реакции продуктов электролиза между собой, с веществом электролита и электрода.
Технический или прикладной электролиз характеризуется сложностью протекающих в промышленных условиях электролитических процессов, различными видами электролиза, их зависимостью от природы электролита, типа электролитической ванны, оптимизации самих электролизных процессов.
Электролитические процессы классифицируются следующим образом:
▪получение неорганических веществ(водорода, кислорода, хлора, щелочей и т.д.)
▪получение металлов(литий, натрий, калий, берилий, магний, цинк, алюминий, медь и т.д.)
16
Консорциум « Н е д р а »
▪очистка металлов(медь, серебро,…)
▪олучение металлических сплавов
▪получение гальванических покрытий
▪обработка поверхностей металлов(азотирование, борирование, электрополировка, очистка)
▪получение органических веществ
▪электродиализ и обессоливание воды
▪нанесение пленок при помощи электрофореза
Актуальность электролиза объясняется тем, что многие вещества получают именно этим способом. Например,
такие металлы как никель, натрий, чистый водород и другие, получают только с помощью этого метода. Кроме того с его помощью электролиза относительно легко можно получить чистые металлы, массовая доля самого элемента в которых стремиться к ста процентам. В промышленности аллюминий и медь в большинстве случаев получают именно электролизом. Преимущество этого способа в относительной дешевизне и простоте. Однако чтобы производство было наиболее выгодным: с наименьшими затратами электроэнергии и с наибольшим выходом продукции, необходимо учитывать различные факторы, влияющие на количество и качество продуктов электролиза (сила тока, плотность тока,
температура электролита, материал электродов и др.).
На сегодняшний день большой популярностью пользуются различные предметы, покрытые драгоценными металлами. (позолоченные или посеребренные вещи).
К тому же металлические изделия покрывают слоем другого металла электролитическим способом с целью защитить его от коррозии.
17
Консорциум « Н е д р а »
Таким образом, исследование электрохимических процессов, определение факторов, влияющих на них,
установление новых способов использования процессов электролиза в промышленных условиях сохранило свою актуальность и востребованность в наши дни.
7.Теоретическое обоснование процессов электролиза.
Электролиз протекает только в тех средах, которые проводят электрический ток. Способностью проводить ток обладают также водные растворы оснований и солей. Безводные кислоты – очень плохие проводники, но водные растворы кислот хорошо проводят ток. Растворы кислот, оснований и солей в других жидкостях в большинстве случаев тока не проводят, но и осмотическое давление таких растворов оказывается нормальным, точно так же не проводят тока водные растворы сахара, спирта, глицерина и другие растворы с нормальным осмотическим давлением.
Различные отношения веществ к электрическому току можно иллюстрировать следующим опытом.
Соединим провода идущие от осветительной сети, с двумя угольными электродами. В один из проводов включим электрическую лампу, позволяющую грубо судить о наличии тока в цепи. Погрузим теперь свободные концы электродов в сухую поваренную соль или безводную серную кислоту. Лампа не загорается, т.к. эти вещества не проводят тока и цепь остается не замкнутой. То же самое происходит, если погрузить электроды в стакан с чистой дестиллированной водой. Но стоит только растворить в воде немного соли или прибавить к ней какой-нибудь кислоты или основания, как лампа тотчас же начинает ярко светиться. Свечение прекращается если опустить электроды в раствор сахара или глицерина и т.п.
18
Консорциум « Н е д р а »
