
Защита объектов транспорта и хранения нефти и газа от коррозии 1
.pdfЗащита объектов транспорта и хранения нефти и газа от коррозии
Физико-химические основы коррозионных процессов и защитные покрытия трубопроводов и резервуаров
ВВЕДЕНИЕ
Рождение гальванических элементов - химических источников электрического тока. Связывают его с именем Александра Вольты.
Однако рассказывают, что, раскапывая египетские древности, археологи обратили внимание на странные сосуды из обожённой глины с изъеденными металлическими пластинами в них.
Что это?.. Многое в окаменевших остатках ушедших, канувших в лету цивилизаций, до сих опор не понятно людям. Нелегко восстановить образ минувшего, тем более что часто он оказывается не таким уж примитивным, как думается. "А уж не банки ли это химических элементов?" - пришла кому-то в голову сумасшедшая мысль. Впрочем, так ли она безумна? Ведь получение постоянного электрического тока химическим путём действительно очень просто. Солёной воды на Земле хоть отбавляй, как и необходимых металлов - цинка и меди.
Вместо меди лучше применять серебро и золото… Первые элементы имели один общий недостаток. Они давали ток лишь первые несколько минут, затем требовали отдыха. Почему это происходило, ни кто не понимал. Но с такими
1
Консорциум « Н е д р а »

Макет космического корабля «Восток-1» в павильоне «Космос» на ВДНХ. За ним — цитата К. Э. Циолковского:
«Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчёт. И уже в конце концов исполнение венчает мысль»
быстро утомляющимися элементами нечего было, и думать затевать какую-то промышленность. И поэтому все усилия исследователей сконцентрировались на проблеме утомляемости.
Оказалось, что цинк, соединяясь с кислотой, вытесняет из нее водород. Пузырьки газа оседают на металлических пластинках и затрудняют прохождение тока. Физики назвали это явление поляризацией и объявили ему войну.
1.История открытия гальванического элемента
Примерно в начале 30-х годов прошлого столетия англичане Кемп и Стерджен выяснили, что цинковая пластина,
покрытая амальгамой - действует слабее чем пластина из чистого цинка, но при этом не растворяется в кислоте, когда элемент не работает, то есть когда он не даёт тока. Это стало существенным достижением. Следом за ним французский учёный, основатель учёной династии Беккерель высказал мысль, что хорошо бы попробовать опускать пластины в разные сосуды так, чтобы выделяющийся водород тут же химически соединялся с кислородом, образуя воду. Идея понравилась, но как её реализовать? Изобретатели всех стран принялись за опыты.
На первом этапе наибольший успех выпал на долю профессора химии Лондонского королевского колледжа Даниеля. В стеклянную банку с медным купоросом он поместил согнутый в цилиндр металлический лист. Внутрь вставил глиняный сосуд с пористыми стенками, заполненный разбавленной серной кислотой. В кислоту был помещён цинк. Водород проходил через поры глиняного сосуда, вытеснял медь из купороса. Несколько синих кристалликов,
брошенных на дно банки, пополняли убыль меди… Поляризация была побеждена! Однако у элемента Даниеля нашлись другие недостатки. Так, он имел электродвижущую силу. Часть электрической энергии тратилось внутри самого элемента на разложение медного купороса.
Соотечественник Даниеля Вильям Грове решил заменить медный купорос азотной кислотой. А чтобы она не разъела
2
Консорциум « Н е д р а »
медный электрод, заменил медь платиной. Всё получилось в соответствии с ожиданиями: электродвижущая сила возросла. К сожалению, возросла и стоимость такого источника тока: платина дорогой металл. Правда, Грове и его последователи делали электроды из тончайших листков, согнутых для прочности буквой S. Не смотря на высокую стоимость, элементы Грове нашли широкое применение в лабораториях многих стран мира.
Может показаться странным, что никто не додумался заменить платину древесным углём. Принципиальная возможность такой замены была уже известна. Но надо учитывать тот уровень техники, ни кто не умел делать плотных углей. А
обычный древесный уголь был слишком пористым. Прошло несколько лет, прежде чем немецкий химик Роберт Бунзен описал способ получения угольных стержней из прессованного молотого графита, который выделяли при сгорании светильного газа на раскалённых стенках реторт.
Стержни стали прекрасным заменителем платины. Элемент Бунзена приняли "на ура" не только лаборатории физики, но и первые электротехнические предприятия по гальванопластике. И это, не смотря на то, что элемент при работе выделял немало удушливых паров азотной кислоты. Правда, Иоаган Поггендорф заменил азотную кислоту на хромовую, но это себя не оправдывало т.к. производство хромовой кислоты очень сложный и дорогостоящий проект.
Изобретатели старались вовсю. На страницах журналов появлялись всё новые и новые конструкции химических элементов. Их изобретали все: любители, научные мужи… Впрочем, во второй половине XIX столетия источники тока стали изготовлять в специальных мастерских. Мастерские эти работали в основном на телеграф. Основными требованиями, которого были: простота устройства, его дешевизна, устойчивость и надёжность в работе. За всё это телеграфисты соглашались на самые слабые токи.
3
Консорциум « Н е д р а »
Можно рассказать ещё о многих более или менее удачных попытках изобретательства. Наибольший успех выпал на долю парижского химика Жоржа Лекланше. Он наполнил глиняную банку смесью перекиси марганца с кусочками угля из газовых реторт и поместил туда же прямоугольную угольную призму, которая должна была служить положительным электродом. Эта система заливалась сверху варом или смолой и вставлялась в стеклянную четырёх угольную банку, заполненную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря, соединяясь с циенную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря, соединяясь с цинком, давал хлористый цинк.
Аммоний распадался на растворяющийся аммиак и водород. Вот тут-то и была ахиллесова пята этого превосходного элемента. Перекись марганца окисляла водород медленно и небольшими порциями. А выделение этого газа зависело от силы тока, который отбирается с элемента.
Больше ток больше выделяется водорода . Водород же поляризует элемент, и последний быстро устаёт. Правда после некоторого отдыха он исправно работает снова. Однако лучше всего его было использовать при малых силах тока в телеграфии или в системе сигнализации, где между моментами работы существуют довольно большие промежутки.
Большое неудобство при использовании элементов Лекланше создавали стеклянные банки с жидкостью. Особенно это мешало компаниям пассажирских перевозок, которые строили корабли с системой сигнализации не чем не уступавшей многим лучшим отелям. Но в море корабли подвергались качке… И чтобы не расплескать жидкость из банок, их стали заполнять опилками, а потом заливать варом.
4
Консорциум « Н е д р а »
Под такой крышкой в результате работы батареи начинали скапливаться газы, которые в последствии разрывали банку. Не скоро люди научились делать сухие элементы, которые стали в наше время такими обычными. Но любой из них является много раз усовершенствованным и упрощенным элементом Лекланше.
Великим достижением прошлого века, связанного с исследованием работы тех же элементов, явилось открытие возможности параллельного и последовательного их соединения, когда в первом случае удавалось получить от них суммарное напряжение, а во втором - суммарный ток…
2.Гальванические источники тока
Гальванические источники тока одноразового действия представляют собой унифицированный контейнер, в
котором находятся электролит, абсорбируемый активным материалом сепаратора, и электроды (анод и катод), поэтому они называются сухими элементами. Этот термин используется применительно ко всем элементам, не содержащим жидкого электролита. К обычным сухим элементам относятся углеродно-цинковые элементы.
Сухие элементы применяются при малых токах и прерывистых режимах работы. Поэтому такие элементы широко используются в телефонных аппаратах, игрушках, системах сигнализации и др.
Действие любого гальванического элемента основано на протекании в нем окислительно-восстановительной реакции. В простейшем случае гальванический элемент состоит из двух пластин или стержней, изготовленных из различных металлов и погруженных в раствор электролита. Такая система делает возможным пространственное разделение окислительно-восстановительной реакции: окисление протекает на одном металле, а восстановление - на другом. Таким образом, электроны передаются от восстановителя к окислителю по внешней цепи.
5
Консорциум « Н е д р а »
Рассмотрим в качестве примера медно-цинковый гальванический элемент, работающий за счет энергии приведенной выше реакции между цинком и сульфатом меди. Этот элемент (элемент Якоби-Даниэля) состоит из медной пластины, погруженной в раствор сульфата меди (медный электрод), и цинковой пластины, погруженной в раствор сульфата цинка (цинковый электрод). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания
они разделены перегородкой, изготовленной из пористого материала.
При работе элемента, т.е. при замкнутой цепи, цинк окисляется: на поверхности его соприкосновения с раствором атомы цинка превращаются в ионы и, гидратируясь, переходят в раствор. Высвобождающиеся при этом электроны движутся по внешней цепи к медному электроду. Вся совокупность этих процессов схематически изображается
уравнением полуреакции, или электрохимическим уравнением:
Zn = Zn |
2+ |
+ 2e- |
|
На медном электроде протекает восстановление ионов меди. Электроны, приходящие сюда от цинкового электрода, соединяются с выходящими из растворадегидратирующимися ионами меди; образуются атомы меди,
выделяющиеся в виде металла. Соответствующее электрохимическое уравнение имеет вид:
Cu 2+ + 2e- = Cu
Суммарное уравнение реакции, протекающей в элементе, получится при сложении уравнений обеих полуреакций.
Таким образом, при работе гальванического элемента, электроны от восстановителя переходят к окислителю по внешней цепи, на электродах идут электрохимические процессы, в растворе наблюдается направленное движение ионов.
6
Консорциум « Н е д р а »
Электрод, на котором протекает окисление, называется анодом (цинк). Электрод, на котором протекает
восстановление, называется катодом (медь).
Впринципе электрическую энергию может дать любая окислительно-восстановительная реакция. Однако, число реакций, практически используемых в химических источниках электрической энергии, невелико. Это связано с тем, что
нвсякая окислительно-восстановительная реакция позволяет создать гальванический элемент, обладающий технически ценными свойствами. Кроме того, многие окислительно-восстановительные реакции требуют расхода дорогостоящих веществ.
Вотличие от медно-цинкового элемента, во всех современных гальванических элементах и аккумуляторах используют не два, а один электролит; такие источники тока значительно удобнее в эксплуатации.
3.Типы гальванических элементов
3.1Угольно-цинковые элементы
Угольно-цинковые элементы (марганец-цинковые) являются самыми распространенными сухими элементами. В
угольно-цинковых элементах используется пассивный (угольный) коллектор тока в контакте с анодом из двуокиси марганца (MnO2), электролит из хлорида аммония и катодом из цинка. Электролит находится в пастообразном состоянии или пропитывает пористую диафрагму.
Такой электролит мало подвижен и не растекается, поэтому элементы называются сухими. |
|
||||
Угольно-цинковые элементы |
"восстанавливаются" в течении перерыва |
в |
работе. Это явление |
обусловлено |
|
постепенным |
выравниванием |
локальных неоднородностей |
в |
композиции |
электролита, |
возникающих в процессе разряда. |
В результате периодического "отдыха" срок |
службы элемента |
продлевается. |
||
|
|
|
|
|
7 |
Консорциум « Н е д р а »
Достоинством угольно-цинковых элементов является их относительно низкая стоимость. К существенным недостаткам
следует отнести значительное снижение напряжения при разряде, невысокую удельную мощность (5...10 Вт/кг)
и малый срок хранения.
Низкие температуры снижают эффективность использования гальванических элементов, а внутренний разогрев батареи его повышает. Повышение температуры вызывает химическую коррозию цинкового электрода водой,
содержащейся |
в |
электролите, |
и |
высыхание |
электролита. |
Эти факторы удается несколько |
компенсировать выдержкой батареи при |
повышенной |
температуре и введением |
||
внутрь элемента, через предварительно проделанное отверстие, солевого раствора. |
|
3.2Щелочные элементы
Как и в угольно-цинковых, в щелочных элементах используется анод из MnO |
2 |
и цинковый катод с разделенным |
|||||||
|
|
|
|
|
|
|
|
|
|
электролитом. |
|
|
|
|
|
|
|
|
|
Отличие |
щелочных |
элементов |
от |
угольно-цинковых |
заключается |
в |
применении |
щелочного электролита, вследствие чего газовыделение при разряде фактически отсутствует, и их можно выполнять герметичными, что очень важно для целого ряда их применений.
3.3Ртутные элементы
Ртутные элементы очень похожи на щелочные элементы. В них используется оксид ртути (HgO). Катод состоит из смеси порошка цинка и ртути. Анод и катод разделены сепаратором и диафрагмой, пропитанной 40% раствором
8
Консорциум « Н е д р а »
щелочи. Так как ртуть дефицитна и токсична, ртутные элементы не следует выбрасывать после их полного использования. Они должны поступать на вторичную переработку.
3.4Серебряные элементы
Они имеют "серебряные" катоды из Ag2O и AgO. Литиевые элементы
В них применяются литиевые аноды, органический электролит и катоды из различных материалов. Они
обладают очень большими сроками хранения, высокими плотностями энергии и работоспособны в широком интервале температур, поскольку не содержат воды.
Так как литий обладает наивысшим отрицательным потенциалом по отношению ко всем |
металлам, литиевые |
|||
элементы характеризуются наибольшим |
номинальным |
напряжением при минимальных габаритах. |
||
Ионная проводимость обеспечивается введением в растворители солей, имеющих анионы больших размеров. |
||||
К |
недостаткам |
литиевых |
элементов следует отнести их |
относительно |
высокую стоимость, обусловленную высокой ценой лития, особыми требованиями к их производству (необходимость
инертной |
атмосферы, |
очистка неводных растворителей). |
Следует |
также |
учитывать, |
что |
некоторые |
литиевые элементы при их вскрытии взрывоопасны. |
|
|
|
|
|
||
Литиевые элементы широко применяются в резервных |
источниках питания схем памяти, измерительных |
||||||
приборах и прочих высокотехнологичных системах. |
|
|
|
|
|
4.Возникновение ЭДС в гальваническом элементе
9
Консорциум « Н е д р а »