
- •1.Представление о белках как важнейшем классе органичских веществ и структурно-функциональном компоненте организма человка.
- •2.Аминокислоты, входящие в состав белков,их строение и свойства. Пептидная связь. Первичная структура белков. Зависимость биологических свойств от первичной структкры.
- •6.Многообразие белков. Глобулярные и фибриллярные белки.
- •9.Особенности ферментативного катализа. Специфичность действия ферментов.
- •10.Классификация и номенклатура ферментов. Зависимость скорости ферментативных реакций от температуры, рН, концентраций фермента и субстрата.
- •12.Коферментные функции витаминов (на примере трансаминаз и дегидрогеназ, витаминов в6, рр, в2)
- •15.Регуляция активности ферментов путем фосфорилирования и дефосфорилирования. Участие ферментов в проведении гормонального сигнала.
- •16.Различие ферментного состава органов и тканей. Органоспецифические ферменты. Изоферменты.
- •17.Изменение активности ферментов при болезнях. Наследственные энзимопатии.
- •18.Определение ферментов в плазме крови с целью диагности болезней, происхождение ферментов плазы крови. Смотри 17
- •19.Применение ферментов для лечения болезней.
- •20.Применение ферментов как аналитических реагентов при лабораторной диагностике
- •21.Строение нуклеиновых кислот. Связи, формирующие структуру днк, рнк. Строение хроматина и рибосом.
- •22.Типы рнк. Строение и функции.
- •23.Субстраты, источники энергии, матрица, ферменты и белки днк-репликативного комплекса.
- •24.Биосинтез рнк (транскрипция).
- •25. Трансляция
- •26 Свойства биологического кода.
- •27. Теория оперона. Функционирование оперонов, регулируемых по механизму индукции и репрессии.
- •28. Молекулярные механизмы генетической изменчивости. Молекулярные мутации: замены,делеции,вставки нуклеотидов
- •30.Основные пищевые вещества-углеводы, жиры, белки,суточная потребность.
- •31. Незаменимые аминокислоты: пищевая ценность разных белков
- •32. Витамины. Классификация витаминов.
- •1. Витамины, растворимые в жирах
- •3. Витаминоподобные в вещества
- •33.Функции витаминов. Алиментарные и вторичные авитаминозы гиповитаминозы. Гипервитаминоз.
- •34. Биохимическая характеристика патогенеза рахита
- •35. Биохимическая характеристика гипервитаминозов а и д
- •36. Понятие о метаболизме,метаболических путях. Ферменты и метаболизм. Понятие регуляции метаболизма.
- •37. Методы изучения обмена веществ.
- •38.Основные мембраны клетки и их функции. Общие свойства мембран:жидкостность, поперечная ассиметрия, избирательная проницаемость
- •39. Липидный состав мембран- фосфолипиды, гликолипиды, холестерин.
- •40. Роль липидов в формировании бислоя.
- •41. Участие фосфолипаз в обмене фосфолипидов.
- •42. Белки мембран: интегральные, поверхностные, заякоренные.
- •44.Трансмембранная передача сигнала. Участие мембран в активации внутриклеточных регуляторных систем: аденилатциклазной и инозитолфосфатной
- •46. Эндэргонические и экзэргоническиг реакции в живой клетке. Макроэргические соединения.
- •47. Дегидрирование субстратов и восстановление кислорода (образо- вание воды) как основной источник энергии для синтеза атф
- •49.НадНдегидрогеназа, убихинондегидрогеназа
- •50. Окислительное фосфорилирование, коэффициент p/о.
- •51. Строение митохондрий и структурная организация дыхательной цепи.
- •52. Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторные функции тканевого дыхания.
- •53. Нарушения энергетического обмена: гипоэнергетические состояния как результат гипоксии, гипоавитаминоза и др. Причин.
- •55. Цикл лимонной кислоты.
- •56.Механизмы регуляции цитратного цикла
- •58 Основные углеводы животных,их содержание в тканях, биологическая роль. Основные углеводы пищи. Преваривание углеводов.
- •59.Глюкоза как важн. Метаболит углеводного обмена:общая схема источников и путей расходования глюкозы в организма.
- •60. Катаболизм глюкозы. Аэробный распад
- •61. Распространение и физиологическое значение аэробного распада глюкозы.
- •62. Использование глюкозы для синтеза жиров в печени и жировой ткани.
- •63. Анаэробный распад глюкозы. Гликолитическая оксидоредукция. Субстратное фосфорилирование.
- •Суммарное уравнение анаэробного гликолиза.
- •65. Биосинтез глюкозы.
- •Обходные пути глюконеогенеза.
- •66. Цикл Кори
- •67. Представление о пентозофосфатном пути превращения глюкозы
- •Реакции пфп.
- •68.Свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена. Мобилизация гликогена. Общая характеристика метаболизм гликогена.
- •Биосинтез гликогена (гликогенез).
- •Распад гликогена (гликогенолиз).
- •Регуляция гликогенолиза и гликогенеза.
- •69. Особенности обмена глюкозы в разных органах и клетках: эритроциты, мозг, мышцы, жировая ткань.
- •70.Обмен глюкозы в печени
- •71.Роль инсулина, глюкагона,адреналина в обмене ув
- •72.Представление о строении и функциях углеводной части гликолипидов и гликопротеидов.
- •73. Наследственные нарушения обмена моносахаридов и дичахаридов:галактоземия, непереносимость фруктозы,непереносимость дисахаридов.
- •74.Важнейшие липиды тканей человека. Резервные липиды и липиды мембран.
- •75.Жирные кислоты липидов тканей человека.
- •75.Эссенциальные жирные кислоты:омега6,3-кислоты как предшественники синтеза эйкозаноидов.
- •77. Биосинтез жирных кислот.
- •79.Биосинтез и использование кетоновых тел в качестве источника энергии
- •81.Ресинтез трацилглицеридов в стенке кишечника. Образование хиломикронов. Транспорт жиров.
- •82.Биосинтез жиров из углеводов в печени, упаковка в лпонп т транспорт
- •83.Состав и строение транспортных липопротеидов крови
- •84.Депонирование и мобилизация жиров: регуляция синтеза и мобилизация жиров. Роль инсулина ,глюкагона и адреналина.
- •85.Основные фосфолипиды и гликолипиды тканей человека. Глицерофосфолипиды.
- •86.Обмен стероидов. Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерина
- •87. Выведение желчных кислот и холестерина из организма
- •88. Лнп и лвп – транспортные формы лолестерина из организма.
- •89. Переваривание белков. Протеиназы: пепсин, трипсин, химотрипсин. Проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ.
- •90. Диагностическое значение биохимического анализа желудочного и дуоденального сока. Протеиназы поджелудочной железы и панкреатиты.
- •91. Трансаминирование: аминотрансферазы, коферментная функция витамина в6. Специфичность аминотрансфераз. Аминокислоты, участвующие в трансаминировании. Особоя роль глутаминовой кислоты.
- •94. Основные источники аммиака в организме. – книга стр.235-238
- •95. ……… Книга стр.235-238
- •96.Биосинтез мочевины. Связь орнитинового цикла с превращениями фумаровой и аспаргиновой кислот: происхождение атомов азота мочевины.
- •98.Обмен безазотистого остатка аминокислот.
- •99. Гликогенные и кетогенные аминокислоты. Синтез глюкозы из аминокислот.
- •100. Синтез аминокислот из глюкозы. Глюкозо – аланиновый цикл.
- •101. Обмен фенилаланина и тирозина в разных тканях.
- •102. Декарбоксилирование аминокислот. Биогенные амины.
- •103. Распад нуклеиновых кислот. Нуклеазы пищеварительного тракта и тканей. Распад пуриновых нуклеотидов.
- •104. Инозиновая кислота как предшественник адениловой и гуаниловой кислот (амф, гмф)
- •105. Нарушения обмена нуклеотидов. Подагра.
- •106.Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов.
- •107. Механизмы передачи гормональных сигналов в клетке.
- •1. Передача гормональных сигналов через мембранные рецепторы
- •2. Передача сигналов через внутриклеточные рецепторы
- •108. Классификация гормонов по биологическому строению и биологическим функциям.
- •109.Изменение гормонального статуса и метаболизма при сахарном диабете.
- •110. Регуляция водно-солевого обмена. Строение и функции альдостерона и вазопрессина.
- •111.Система ренин-ангиотензин-альдостерон. Биохимические механизмы возникновения почечной гипертонии.
- •112.Роль гормонов в регуляции обменов кальция и фосфатов.
- •113. Причины и проявления рахита, гипо и гиперпаратироидизма.
- •114. Изменение метаболизма при гипо и гипертиреозе.
- •115. Половые гормоны: строение, влияние на обмен веществ.
- •116.Распад гема
- •116.Нарушение обмена билирубина
- •117.Диагностическое значение определения билирубина
- •118.Токсичность кислорода: образование активных форм
- •120.Полиморфные формы гемоглобина
- •122.Распад Гема.Обезвреживание билирубина
- •Этапы метаболизма билирубина в организме
- •Превращение в кишечнике
- •123.Нарушение обмена билирубина:желтухи
- •124.Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний. Энзимодиагностика.
- •125. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры.
- •127.Гликозаминогликаны и протеогликаны. Строение и функции.
- •128. Особенности энергетического обмена в мышцах. Креатинфосфат.
- •130. Энергетический обмен в нервной ткани. Значение аэробного распада гдюкозы.
- •131.Медиаторы:катехоламины,серотонин,гамма-аминомасляная кислота,глутаминовая кислота,глицин,гистамин.
9.Особенности ферментативного катализа. Специфичность действия ферментов.
Важнейшие особенности ферментативного катализа - эффективность, специфичность и чувствительность к регуляторным воздействиям. Ферменты увеличивают скорость превращения субстрата по сравнению с неферментативной реакцией в 109-1012 раз. Столь высокая эффективность обусловлена особенностями строения активного центра. Принято считать, что активный центр комплементарен переходному состоянию субстрата при превращении его в продукт. Благодаря этому стабилизируется переходное состояние и понижается активационный барьер.
Большинство ферментов обладает высокой субстратной специфичностью, т. е. способностью катализировать превращение только одного или несколько близких по структуре веществ. Специфичность определяется топографией связывающего субстрат участка активного центра. Активность ферментов регулируется в процессе их биосинтеза (в т.ч. благодаря образованию изоферментов, которы катализируют идентичные реакции, но отличаются строением и каталитическими свойствами), а также условиями среды (рН, температура, ионная сила раствора) и многочисленными ингибиторами и активаторами, присутствующими в организме. Ингибиторами и активаторами могут служить сами субстраты (в определенных концентрациях), продукты реакции, а также конечные продукты в цепи последовательных превращений вещества Ферментативные реакции чувствительны к внешним условиям, в частности к ионной силе раствора и рН среды.
Биологическая функция фермента, как и любого белка, обусловлена наличием в его структуре активного центра. Лиганд, взаимодействующий с активным центром фермента, называют субстратом. В активном центре фермента есть аминокислотные остатки, функциональные группы которых обеспечивают связывание субстрата, и аминокислотные остатки, функциональные группы которых осуществляют химическое превращение субстрата. Условно эти группы обозначают как участок связывания субстрата и каталитический участок, однако следует помнить, что не всегда эти участки имеют чёткое пространственное разделение и иногда могут "перекрываться" . В участке связывания субстрат при помощи нековалентных связей взаимодействует (связывается) с ферментом, формируя фермент-субстратный комплекс. В каталитическом участке субстрат претерпевает химическое превращение в продукт, который затем высвобождается из активного центра фермента. Схематично процесс катализа можно представить следующим уравнением: Е + S ↔ ES ↔ ЕР ↔ Е + Р, где Е - фермент (энзим), S - субстрат, Р - продукт. Специфичность - наиболее важное свойство ферментов, определяющее биологическую значимость этих молекул. Различают субстратную и каталитическую специфичности фермента, определяемые строением активного центра. Под субстратной специфичностью понимают способность каждого фермента взаимодействовать лишь с одним или несколькими определёнными субстратами.
Различают:
абсолютную субстратную специфичность;
групповую субстратную специфичность;
стереоспецифичность.
Абсолютная субстратная специфичность. Активный центр ферментов, обладающих абсолютной субстратной специфичностью, комплементарен только одному субстрату. Следует отметить, что таких ферментов в живых организмах мало.
Групповая субстратная специфичность Большинство ферментов катализирует однотипные реакции с небольшим количеством (группой) структурно похожих субстратов.
Стереоспецифичность При наличии у субстрата нескольких стерео-изомеров фермент проявляет абсолютную специфичность к одному из них.
Каталитическая специфичность Фермент катализирует превращение присоединённого субстрата по одному из возможных путей его превращения, Это свойство обеспечивается строением каталитического участка активного центра фермента и называется каталитической специфичностью, или специфичностью пути превращения субстрата.