
- •1.Представление о белках как важнейшем классе органичских веществ и структурно-функциональном компоненте организма человка.
- •2.Аминокислоты, входящие в состав белков,их строение и свойства. Пептидная связь. Первичная структура белков. Зависимость биологических свойств от первичной структкры.
- •6.Многообразие белков. Глобулярные и фибриллярные белки.
- •9.Особенности ферментативного катализа. Специфичность действия ферментов.
- •10.Классификация и номенклатура ферментов. Зависимость скорости ферментативных реакций от температуры, рН, концентраций фермента и субстрата.
- •12.Коферментные функции витаминов (на примере трансаминаз и дегидрогеназ, витаминов в6, рр, в2)
- •15.Регуляция активности ферментов путем фосфорилирования и дефосфорилирования. Участие ферментов в проведении гормонального сигнала.
- •16.Различие ферментного состава органов и тканей. Органоспецифические ферменты. Изоферменты.
- •17.Изменение активности ферментов при болезнях. Наследственные энзимопатии.
- •18.Определение ферментов в плазме крови с целью диагности болезней, происхождение ферментов плазы крови. Смотри 17
- •19.Применение ферментов для лечения болезней.
- •20.Применение ферментов как аналитических реагентов при лабораторной диагностике
- •21.Строение нуклеиновых кислот. Связи, формирующие структуру днк, рнк. Строение хроматина и рибосом.
- •22.Типы рнк. Строение и функции.
- •23.Субстраты, источники энергии, матрица, ферменты и белки днк-репликативного комплекса.
- •24.Биосинтез рнк (транскрипция).
- •25. Трансляция
- •26 Свойства биологического кода.
- •27. Теория оперона. Функционирование оперонов, регулируемых по механизму индукции и репрессии.
- •28. Молекулярные механизмы генетической изменчивости. Молекулярные мутации: замены,делеции,вставки нуклеотидов
- •30.Основные пищевые вещества-углеводы, жиры, белки,суточная потребность.
- •31. Незаменимые аминокислоты: пищевая ценность разных белков
- •32. Витамины. Классификация витаминов.
- •1. Витамины, растворимые в жирах
- •3. Витаминоподобные в вещества
- •33.Функции витаминов. Алиментарные и вторичные авитаминозы гиповитаминозы. Гипервитаминоз.
- •34. Биохимическая характеристика патогенеза рахита
- •35. Биохимическая характеристика гипервитаминозов а и д
- •36. Понятие о метаболизме,метаболических путях. Ферменты и метаболизм. Понятие регуляции метаболизма.
- •37. Методы изучения обмена веществ.
- •38.Основные мембраны клетки и их функции. Общие свойства мембран:жидкостность, поперечная ассиметрия, избирательная проницаемость
- •39. Липидный состав мембран- фосфолипиды, гликолипиды, холестерин.
- •40. Роль липидов в формировании бислоя.
- •41. Участие фосфолипаз в обмене фосфолипидов.
- •42. Белки мембран: интегральные, поверхностные, заякоренные.
- •44.Трансмембранная передача сигнала. Участие мембран в активации внутриклеточных регуляторных систем: аденилатциклазной и инозитолфосфатной
- •46. Эндэргонические и экзэргоническиг реакции в живой клетке. Макроэргические соединения.
- •47. Дегидрирование субстратов и восстановление кислорода (образо- вание воды) как основной источник энергии для синтеза атф
- •49.НадНдегидрогеназа, убихинондегидрогеназа
- •50. Окислительное фосфорилирование, коэффициент p/о.
- •51. Строение митохондрий и структурная организация дыхательной цепи.
- •52. Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторные функции тканевого дыхания.
- •53. Нарушения энергетического обмена: гипоэнергетические состояния как результат гипоксии, гипоавитаминоза и др. Причин.
- •55. Цикл лимонной кислоты.
- •56.Механизмы регуляции цитратного цикла
- •58 Основные углеводы животных,их содержание в тканях, биологическая роль. Основные углеводы пищи. Преваривание углеводов.
- •59.Глюкоза как важн. Метаболит углеводного обмена:общая схема источников и путей расходования глюкозы в организма.
- •60. Катаболизм глюкозы. Аэробный распад
- •61. Распространение и физиологическое значение аэробного распада глюкозы.
- •62. Использование глюкозы для синтеза жиров в печени и жировой ткани.
- •63. Анаэробный распад глюкозы. Гликолитическая оксидоредукция. Субстратное фосфорилирование.
- •Суммарное уравнение анаэробного гликолиза.
- •65. Биосинтез глюкозы.
- •Обходные пути глюконеогенеза.
- •66. Цикл Кори
- •67. Представление о пентозофосфатном пути превращения глюкозы
- •Реакции пфп.
- •68.Свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена. Мобилизация гликогена. Общая характеристика метаболизм гликогена.
- •Биосинтез гликогена (гликогенез).
- •Распад гликогена (гликогенолиз).
- •Регуляция гликогенолиза и гликогенеза.
- •69. Особенности обмена глюкозы в разных органах и клетках: эритроциты, мозг, мышцы, жировая ткань.
- •70.Обмен глюкозы в печени
- •71.Роль инсулина, глюкагона,адреналина в обмене ув
- •72.Представление о строении и функциях углеводной части гликолипидов и гликопротеидов.
- •73. Наследственные нарушения обмена моносахаридов и дичахаридов:галактоземия, непереносимость фруктозы,непереносимость дисахаридов.
- •74.Важнейшие липиды тканей человека. Резервные липиды и липиды мембран.
- •75.Жирные кислоты липидов тканей человека.
- •75.Эссенциальные жирные кислоты:омега6,3-кислоты как предшественники синтеза эйкозаноидов.
- •77. Биосинтез жирных кислот.
- •79.Биосинтез и использование кетоновых тел в качестве источника энергии
- •81.Ресинтез трацилглицеридов в стенке кишечника. Образование хиломикронов. Транспорт жиров.
- •82.Биосинтез жиров из углеводов в печени, упаковка в лпонп т транспорт
- •83.Состав и строение транспортных липопротеидов крови
- •84.Депонирование и мобилизация жиров: регуляция синтеза и мобилизация жиров. Роль инсулина ,глюкагона и адреналина.
- •85.Основные фосфолипиды и гликолипиды тканей человека. Глицерофосфолипиды.
- •86.Обмен стероидов. Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерина
- •87. Выведение желчных кислот и холестерина из организма
- •88. Лнп и лвп – транспортные формы лолестерина из организма.
- •89. Переваривание белков. Протеиназы: пепсин, трипсин, химотрипсин. Проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ.
- •90. Диагностическое значение биохимического анализа желудочного и дуоденального сока. Протеиназы поджелудочной железы и панкреатиты.
- •91. Трансаминирование: аминотрансферазы, коферментная функция витамина в6. Специфичность аминотрансфераз. Аминокислоты, участвующие в трансаминировании. Особоя роль глутаминовой кислоты.
- •94. Основные источники аммиака в организме. – книга стр.235-238
- •95. ……… Книга стр.235-238
- •96.Биосинтез мочевины. Связь орнитинового цикла с превращениями фумаровой и аспаргиновой кислот: происхождение атомов азота мочевины.
- •98.Обмен безазотистого остатка аминокислот.
- •99. Гликогенные и кетогенные аминокислоты. Синтез глюкозы из аминокислот.
- •100. Синтез аминокислот из глюкозы. Глюкозо – аланиновый цикл.
- •101. Обмен фенилаланина и тирозина в разных тканях.
- •102. Декарбоксилирование аминокислот. Биогенные амины.
- •103. Распад нуклеиновых кислот. Нуклеазы пищеварительного тракта и тканей. Распад пуриновых нуклеотидов.
- •104. Инозиновая кислота как предшественник адениловой и гуаниловой кислот (амф, гмф)
- •105. Нарушения обмена нуклеотидов. Подагра.
- •106.Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов.
- •107. Механизмы передачи гормональных сигналов в клетке.
- •1. Передача гормональных сигналов через мембранные рецепторы
- •2. Передача сигналов через внутриклеточные рецепторы
- •108. Классификация гормонов по биологическому строению и биологическим функциям.
- •109.Изменение гормонального статуса и метаболизма при сахарном диабете.
- •110. Регуляция водно-солевого обмена. Строение и функции альдостерона и вазопрессина.
- •111.Система ренин-ангиотензин-альдостерон. Биохимические механизмы возникновения почечной гипертонии.
- •112.Роль гормонов в регуляции обменов кальция и фосфатов.
- •113. Причины и проявления рахита, гипо и гиперпаратироидизма.
- •114. Изменение метаболизма при гипо и гипертиреозе.
- •115. Половые гормоны: строение, влияние на обмен веществ.
- •116.Распад гема
- •116.Нарушение обмена билирубина
- •117.Диагностическое значение определения билирубина
- •118.Токсичность кислорода: образование активных форм
- •120.Полиморфные формы гемоглобина
- •122.Распад Гема.Обезвреживание билирубина
- •Этапы метаболизма билирубина в организме
- •Превращение в кишечнике
- •123.Нарушение обмена билирубина:желтухи
- •124.Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний. Энзимодиагностика.
- •125. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры.
- •127.Гликозаминогликаны и протеогликаны. Строение и функции.
- •128. Особенности энергетического обмена в мышцах. Креатинфосфат.
- •130. Энергетический обмен в нервной ткани. Значение аэробного распада гдюкозы.
- •131.Медиаторы:катехоламины,серотонин,гамма-аминомасляная кислота,глутаминовая кислота,глицин,гистамин.
44.Трансмембранная передача сигнала. Участие мембран в активации внутриклеточных регуляторных систем: аденилатциклазной и инозитолфосфатной
Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из внешней среды. "Узнавание" сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. Клетку-мишень определяют по способности избирательно связывать данную сигнальную молекулу с помощью рецептора.Если сигнал воспринимается мембранными рецепторами, то схему передачи информации можно представить так:
взаимодействие рецептора с сигнальной молекулой (первичным посредником);
активация мембранного фермента, ответственного за образование вторичного посредника;
образование вторичного посредника цАМФ, цГМФ, ИФ3, ДАТ или Са2+;
активация посредниками специфических белков, в основном протеинкиназ, которые, в свою очередь, фосфорилируя ферменты, оказывают влияние на активность внутриклеточных процессов.
Несмотря на огромное разнообразие сигнальных молекул, рецепторов и процессов, которые они регулируют, существует всего несколько механизмов трансмембранной передачи информации: с использованием аденилатциклазной системы, инозитолфосфатной системы, каталитических рецепторов, цитоплазматических или ядерных рецепторов.
Аденилатциклаза
Фермент аденилатциклаза, катализирующий превращение АТФ в цАМФ, - ключевой фермент аденилатциклазной системы передачи сигнала. Аденилатциклаза обнаружена во всех типах клеток. Фермент относят к группе интегральных белков клеточной мембраны, он имеет 12 трансмембранных доменов. Внеклеточные фрагменты аденилатциклазы гликозилированы. Цитоплазматические домены аденилатциклазы имеют два каталитических центра, ответственных за образование цАМФ - вторичного посредника, участвующего в регуляции активности фермента протеинкиназы А На активность аденилатциклазы оказывают влияние как внеклеточные, так и внутриклеточные регуляторы. Внеклеточные регуляторы (гормоны, эйкозаноиды, биогенные амины) осуществляют регуляцию через специфические рецепторы, которые с помощью α-субъединиц G-белков передают сигналы на аденилатциклазу. αs-Субъединица (стимулирующая) при взаимодействии с аденилатциклазой активирует фермент, α-субъединица (ингибирующая) ингибирует фермент. В свою очередь, аденилатциклаза стимулирует проявление ГТФ-фосфатазной активности α-субъединиц. В результате дефосфорилирования ГТФ образуются субъединицы αs-ГДФ и αi-ГДФ, не комплементарные аденилатциклазе. Из 8 изученных изоформ аденилатциклазы 4 - Са2+-зависимые (активируются Са2+). Регуляция аденилатциклазы внутриклеточным кальцием позволяет клетке интегрировать активность двух основных вторичных посредников цАМФ и Са2+. При участии аденилатциклазной системы реализуются эффекты сотни различных по своей природе сигнальных молекул - гормонов, нейромедиаторов, эйкозаноидов. Функционирование системы трансмембранной передачи сигналов обеспечивают белки: Rs-рецептор сигнальной молекулы, которая активирует аденилатциклазу, и Ri-рецептор сигнальной молекулы, которая ингибирует аденилатциклазу; Gs-стимулирующий и Gj-ингибирующий аденилатциклазу белки; ферменты аденилатциклаза (АЦ) и протеинкиназа А (ПКА).
Последовательность событий, приводящих к активации аденилатциклазы:
связывание активатора аденилатциклазной системы, например гормона (Г) с рецептором (Rs), приводит к изменению конфор-мации рецептора и увеличению его сродства к Gs-белку. В результате образуется комплекс [Г][R][О-ГДФ];
присоединение [Г][R] к G-ГДФ снижает сродство α-субъединицы Gs -белка к ГДФ и увеличивает сродство к ГТФ. ГДФ замещается на ГТФ;
это вызывает диссоциацию комплекса. Отделившаяся субъединица α, связанная с молекулой ГТФ, обладает сродством к адени-латциклазе: [Г][R][0-ГТФ] → [Г][R] + α-ГТФ + βγ;
взаимодействие α-субъединицы с аденилатциклазой приводит к изменению конфор-мации фермента и его активации, увеличивается скорость образования цАМФ из АТФ; конформационные изменения в комплексе [α-ГТФ][АЦ] стимулируют повышение ГТФ-фосфатазной активности α-субъединицы. Протекает реакция дефосфорилирования ГТФ, и один из продуктов реакции - неорганический фосфат (Pi) отделяется от α-субъединицы, а комплекс [α-ГДФ] сохраняется; скорость гидролиза определяет время проведения сигнала; образование в активном центре α-субъединицы молекулы ГДФ снижает его сродство к аденилатциклазе, но увеличивает сродство к βγ-субъединицам. Gs-белок возвращается к неактивной форме; если рецептор связан с активатором, например гормоном, цикл функционирования Gs белка повторяется.
Активация протеинкиназы А (ПКА)
Молекулы цАМФ могут обратимо соединяться с регуляторными субъединицами ПКА.
Присоединение цАМФ к регуляторным субъединицам (R) вызывает диссоциацию комплекса С2R2 на комплекс цАМФ4 R2 и С + С.
Активная протеинкиназа А фосфорилирует специфические белки по серину и треонину, в результате изменяются конформация и активность фосфорилированных белков, а это приводит к изменению скорости и направления регулируемых ими процессов в клетке.
Концентрация цАМФ.в клетке может регулироваться, она зависит от соотношения активностей ферментов аденилатциклазы и фосфодиэстеразы.
Большую роль в регуляции внутриклеточной сигнальной системы играет белок AKAPs. "Заякоренный" белок AKAPs участвует в сборке ферментных комплексов, включающих не только ротеинкиназу А, но и фосфодиэстеразу и фосфопротеинфосфатазу.
Каскадный механизм усиления и подавления сигнала. Передача сигнала от мембранного рецептора через G-белок на фермент аденилатциклазу служит примером каскадной системы усиления этого сигнала. Одна молекула, активирующая рецептор, может "включать" несколько G-белков, и затем каждый активирует несколько молекул аденилатциклазы с образованием тысяч молекул цАМФ. На этом этапе сигнал усиливается в 102-103 раз. Образующийся цАМФ "включают" другой фермент – протеинкиназу А, усиливая сигнал ещё в 1000 раз. Фосфорилирование ферментов протеинкиназой А ещё больше усиливает сигнал, в результате суммарное усиление равно 106-107 раз. Таким образом, по механизму каскадного усиления одна молекула регулятора способна изменить активность миллионов других молекул.Но для любой из систем трансмембранной передачи сигнала клетка имеет другую еистему, подавляющую этот сигнал. Каждый из этапов в ферментном каскаде находится под контролем специальных подавляющих этот сигнал механизмов. Например, длительное действие гормона приводит к десенсибилизации мембранных рецепторов: они либо инактивируются, либо вместе с гормоном погружаются в клетку посредством эндоцитоза. В результате десенсибилизации рецепторов степень активации аденилатциклазной системы снижается. Если в клетке длительное время повышена концентрация цАМФ (повышена активность протеинкиназы А), может происходить фосфорилирование кальциевых каналов, что приводит к повышению концентрации Са2+ в клетке. Кальций активирует Са2+-зависимую фосфодиэстеразу, катализирующую превращение цАМФ в АМФ. В результате инактивации протеинкиназы А (R2C2) снижается скорость фосфорилирования специфических ферментов. Завершает "выключение" системы фосфопротеинфосфатаза, дефосфорилирующая фосфопротеины.
Инозитолфосфатная система
Функционирование инозитолфосфатной системы трансмембранной передачи сигнала обеспечивают: R (рецептор), фосфолипаза С, Gplc - белок, активирующий фосфолипазу С, белки и ферменты мембран и цитозоля.
Последовательность событий, приводящих к активации фосфолипазы С:
связывание сигнальной молекулы, например гормона с рецептором (R), вызывает изменение конформации и увеличение сродства к Ор1с-белку.
образование комплекса [Г] [К][Срlс-ГДФ] приводит к снижению сродства α-протомера Срlс-белка к ГДФ и увеличению сродства к ГТФ. ГДФ заменяется на ГТФ.
это вызывает диссоциацию комплекса; отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фос-фолипазе С.
α-ГТФ взаимодействует с фосфолиггазой С и активирует её. Под действием фосфолипа-зы-С происходит гидролиз липида мембраны фосфатидилинозитол-4,5-бисфосфата (ФИФ2).
в ходе гидролиза образуется и выходит в цитозоль гидрофильное вещество инозитол-1,4,5-трифосфат (ИФ3). Другой продукт реакции диацилглицерол (ДАГ) остаётся в мембране и участвует в активации фермента протеинкиназы С (ПКС).
инозитол-1,4,5-трифосфат (ИФ3) связывается специфическими центрами Са2+-канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала - Са2+ поступает в цитозоль. В отсутствие в цитозоле ИФ3 канал закрыт.
Активация протеинкиназы С
Повышение концентрации Са2+ в цитозоле клетки увеличивает скорость взаимодействия Са2+ с неактивным цитозольным ферментом протеинкиназой С (ПКС) и белком кальмо-дулином, таким образом сигнал, принятый рецептором клетки, раздваивается.
Связывание протеинкиназы С с ионами кальция позволяет ферменту вступать в кальций-опосредованное взаимодействие с молекулами "кислого" фосфолипида мембраны, фосфатидилсерина (ФС). Диацилглицерол, занимая специфические центры в протеинкиназе С, ещё более увеличивает её сродство к ионам кальция.
На внутренней стороне мембраны образуется ферментативный комплекс - [ПКС][Са2+] [ДАГ][ФС] - активная протеинкиназа С, фосфорилирующая специфические ферменты по серину и треонину.
Энергетический обмен. Митохондриальная цепь переноса электронов.