Добавил:
Адепт твердотельной электроники, последователь учений Михайлова Н.И. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИДЗ / me_7_6_3 9.5а.docx
Скачиваний:
46
Добавлен:
29.09.2024
Размер:
1.84 Mб
Скачать

6. Connection of low-frequency noise with transistor manufacturing technology

To identify hidden defects in semiconductor products, as a rule, noise of the type 1/f (flicker noise) is used.

Methods of rejection of semiconductor products by noise are based on the fact that the studied products are compared by noise level with a control defect-free product and by the difference in noise values, the product is evaluated for reliability. However, a serious disadvantage of these methods is their rather low reliability. To determine potentially unreliable transistors, the following method is used - noise measurement is carried out in the mode of an emitter-base and collector-base junction diode at a forward current using a direct measurement unit at a frequency of 1 kHz, after which the signal is detected by a quadratic detector and measured on a digital voltmeter [41].

For a sufficient sample of transistors from a batch of the same type, the difference in the values of the noise of the emitter-base and collector-base transitions for each transistor is found. The criterion for estimating the difference in noise values is selected based on the difference between the minimum, average and maximum values for the two transitions. Transistors in which the difference in the noise values of the emitter-base and collector-base transitions will be greater than the established criterion are considered potentially unreliable.

7. Image of a low-signal equivalent Schottky-barrier transistor circuit. Explanation of how such a scheme is better or worse than s-parameters

Picture 35 – Low-signal equivalent Schottky-barrier transistor circuit

where Ri – gate resistance; Cgs – gate-source capacity; Cgd – gate-drain capacity; Сds – drain-source capacity; Rds – drain-source resistance; GUgs – drain current source controlled by gate-source voltage; Lg, Rg, Ld, Rd, Ls, Rs – «parasitic» elements [42].

Connection of «parasitic» elements with transistor topology:

Picture 36 – The structure of a transistor with «parasitic» elements [43]

The low-signal equivalent circuit of a field-effect transistor with a Schottky barrier (picture 32) describes the parameters well in a wide frequency range, but does not reflect the essence of the transistor operation at low frequencies. In addition, the introduction of two capacitors Cgs and Cgd are not physically clearly interpreted. The introduction of Ri also causes problems in its calculation. The scheme in the form of an inverted T-link is partially free from these disadvantages.

Picture 37 – Equivalent transistor circuit in the form of a T-link

In this scheme R1 corresponds to the resistance of the input part of the current channel. The resistance R2 corresponds to the resistance of the output part of the current channel, which in operating mode is significantly narrower than the input part, and accordingly R2 R1. Through this resistance, the drain voltage also influences the effective control voltage between the gate and the channel, that is, the voltage Uc. The capacitance C reflects the charge properties of the depleted layer [43].

It should be noted that the frequency domain of the correct description of the amplifying properties of the transistor is characteristic of both circuits – for a low-signal circuit and a circuit in the form of a T-link. However, at low frequencies up to DC, a more accurate description is given by the scheme in the form of a T-link.

Hence, the universal way to correctly describe the linear mode of a transistor as an element of the microwave path is to use scattering parameters – S-parameters. This is facilitated by the high accuracy of measurements of these parameters provided by modern vector circuit analyzers. These parameters determine the relationship of normalized incident a and reflected b waves at the input and output of the transistor [43]:

where = – is the reflection coefficient from the input at the matched output, that is, at . = – is the reflection coefficient from the output at the matched input, that is, at . = – is the input-to-output transmission coefficient at a matched output, that is, at . = – is the output—to-input feedback coefficient at a matched input, that is, at .

That is, the use of scattering parameters (S-parameters) provides a higher accuracy of measurements of transistor parameters. Also, it is worth noting that at low frequencies up to DC, a more accurate description is given by the scheme in the form of a T-link.

Answer:

1. The thickness of the base and the angle of flight of the bipolar transistor:

Wb = 0,446 µm

1 rad

2. Gate length and span angle of the field effect transistor:

Lg = 1,989 µm

1 rad

3. Thickness of the high-alloy HEMT area:

A = 32,69 nm

4. The distance of the electron displacement from the equilibrium position at T = 300 K:

LD = 8,12 nm

4 балл

LIST OF USED LITERATURE

1. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 418.

2. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 53.

3. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 3.

4. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 410.

5. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 413.

6. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 5.

7. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 418.

8. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 9.

9. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 422.

10. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 13.

11. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 17.

12. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 15.

13. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 431.

14. Structure, operating principle and equivalent pin diode circuit [Electronic resource]: // URL: https://studopedia.info/5-50256.html

15. Mixer diode [Electronic resource]: // URL: https://ppt-online.org/48559

16. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 25.

17. IMPATT diodes [Electronic resource]: // URL: https://studref.com/631092/tehnika/lavinno_proletnye_diody

18. Ivanov V. A. lecture materials 11 [Electronic resource]: // URL: https://disk.yandex.ru/d/LfNrHSyYQsjzxg/материалы%20для%2011%20%20лекции%20ЛПД%20ДГ%20ТД

19. Ultrahigh frequency diodes: generator diodes [Electronic resource]: // URL: http://www.club155.ru/diods-uhf-generator

20. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 464.

21. Microwave appliances and devices: Laboratory workshop / V. A. Ivanov, A. A. Kolomiytsev, St. Petersburg: Publishing House of ETU «LETI», 2008. p. 27.

22. Ivanov V. A. lecture materials 11 [Electronic resource]: // URL: https://disk.yandex.ru/d/LfNrHSyYQsjzxg/материалы%20для%2014%20лекции%20%20Биполярные%20тр-ры

23. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 510.

24. Transistor with high electron mobility [Electronic resource]: // URL:https://ru.wikipedia.org/wiki/Транзистор_с_высокой_подвижностью_электронов

25. Transistor with high electron mobility (HEMT) [Electronic resource]: // URL: https://ppt-online.org/770930

26. Ballistic and quasi-ballistic transport in semiconductor structures [Electronic resource]: // URL: https://www.mathnet.ru/links/bf01d353366c479136cfb4be1c7aa6c4/phts1734.pdf

27. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 519.

28. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 567.

29. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 551.

30. Semiconductors with a wide band gap [Electronic resource]: // URL: https://www.soel.ru/online/provodniki-s-shirokoy-zapreshchyennoy-zonoy-budushchee-tekhnologiy-sic-i-gan/

31. Gallium nitride (GaN) Microsemi transistors [Electronic resource]: // URL: https://www.icquest.ru/publications/3-microsemi/2012/643-nitrid-gallievye-gan-tranzistory-microsemi

32. Indium phosphide [Electronic resource]: // URL: https://ru.wikibrief.org/wiki/Indium_phosphide

33. Photonic and radiophotonic applications: prospects for the Ip wafer market

[Electronic resource]: // URL: https://www.photonics.su/journal/article/7326

34. SiC – electronics: past, future and present [Electronic resource]: // URL: https://www.electronics.ru/journal/article/754

35. CVD-diamonds: application in electronics [Electronic resource]: // URL: 1

36. A field-effect transistor with a Schottky barrier based on gallium arsenide [Electronic resource]: // URL: http://www.stud.izhdv.ru/msch/13.htm

37. I. I. Zyatkov, L. K. Chirkin, E. P. Yurchenko, Calculation of MPD devices: Textbook, Leningrad, 1991.

38. B. V. Ivanov, A.D. Tupitsyn, A. K. Shanurenko, The use of characteriograph for the study of vacuum and solid-state devices: Textbook, St. Petersburg: Publishing House of ETU «LETI», 2012. p. 70.

39. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 546.

40. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 55.

41. The possibility of rejection of semiconductor devices by the level of low-frequency noise [Electronic resource]: // URL: https://cyberleninka.ru/article/n/vozmozhnost-otbrakovki-poluprovodnikovyh-priborov-po-urovnyu-nizkochastotnogo-shuma/viewer

42. Method of constructing a low-signal model [Electronic resource]: // URL: https://cyberleninka.ru/article/n/metodika-postroeniya-malosignalnoy-modeli-svch-tranzistora-s-vysokoy-podvizhnostyu-elektronov/viewer

43. Grigoriev A.D., Ivanov V. A., Molokovsky S. I. Microwave electronics: Textbook / Edited by A. D. Grigoriev., St. Petersburg: Lan Publishing House, 2016. p. 523.

Соседние файлы в папке ИДЗ