- •Task №1
- •1. Present your arguments (logical and numerical) on the assessment
- •3. Comparison of the quantum energy with the binding energy of clusters in water. Calculation of the water heating temperature necessary for the destruction of its cluster structure:
- •4. Comparison of quantum energy with the energy of chemical bonding of atoms in a water molecule:
- •5. Comparison of the quantum energy from a microwave oven with the thermal energy characteristic of protein denaturation:
- •2. Calculation of the number of quanta for heating:
- •Task №3
- •3. Compare numerically 2 typical devices: vacuum and semiconductor according to the following parameters:
- •1. Numerical comparison of the maximum velocities of charged particles:
- •2. Numerical comparison of the length of the interaction region for the span angle of π - radians:
- •3. Numerical comparison of the bulk charge density:
- •4. Calculation of the microperviance and «plasma» frequency for a vacuum device:
- •5. Calculation of the Debye length and plasma frequency for a semiconductor device:
- •2 Балл task №4
- •4. Is it possible to provide high-speed modulation and grouping of charged particles in semiconductor devices using the initial part of the field-velocity characteristic?
- •2 Балл task №5
- •Task №6
- •6. Determine the noise factor of the amplifier in dB if its effective noise temperature is 115 k.
- •2. Calculation of the effective noise temperature of two such devices connected in a cascade:
- •3. Analyze the result:
- •0.75 Балл
- •1. Балл
2 Балл task №5
5. Determine the amplitude of the «self-consistent» voltage at the grid gap of the resonator with a high intrinsic Q, if the amplitude of the first harmonic of the convection current at the input to the resonator is 8 [mA], the angle of flight 900, the accelerating voltage is 7 kV, the beam current is 100 mA.
Given:
Ic1 = 8 mA
U0 = 7 kV
I0 = 100 mA
Solving:
The coefficient of interaction of the electron flow with the gap field [22]:
М
(18)
where
– angle of passage of an electron in a flat gap; Ii
– amplitude of the induced current; Ic
– amplitude of the convection current.
Thus, by the formula (16) we calculate M:
М
=
=
0,9
Conductivity formula [23]:
Ge
=
=
(19)
Hence, we express the amplitude of the «self-consistent» voltage:
Um
=
(20)
Also, we write the following expression for conductivity [24]:
Ge
= G0
(21)
Then, the conductivity according to the formula (21) is equal to:
Ge
=
=
1,243
10-6
Ω-1
«Self-consistent» voltage by the formula (20):
Thus, we conclude that the resulting «self-consistent» voltage (5,8 kV) is less than the accelerating voltage (7kV).
Answer:
Um = 5792,44 V
1 балл
Task №6
6. Determine the noise factor of the amplifier in dB if its effective noise temperature is 115 k.
6.1 Calculate the effective noise temperature of two such devices connected in cascade if the gain of each device is 11,75 dB.
6.2 Analyze the result.
Given:
T0 = 300 K
Teff = 115 K
Кgain = 11,75 dB
Solving:
1. Calculation of the noise coefficient of the amplifying device:
The noise coefficient is calculated by the formula [25]:
Кn = 10∙lgNF (22)
Where NF – noise factor, calculated as [25]:
NF
= 1 +
(23)
Then, the noise factor is:
NF
= 1 +
=
1 +
=
1,383
Hence, the noise coefficient of the amplifying device is equal to:
Кn = 10∙lgNF = 10∙lg1,383 = 1,408 dB
2. Calculation of the effective noise temperature of two such devices connected in a cascade:
According to the Friis formula, the noise factor of two devices connected in a cascade is equal to [26]:
NFsum
=
(24)
Considering that in our case for each of the devices NF1 = NF2 = NF, then:
NFsumm
=
Calculate the gain of the device [27]:
G
=
=
= 14,962
Then, according to the formula (24):
NFsumm
=
=
=
1,409
The effective noise temperature of the cascade through the formula (23) is equal to:
Teff.summ = T0∙(NFsumm – 1) = 300∙(1,409 – 1) = 122,7 К
Thus, the effective noise temperature of two cascaded devices is greater than the effective noise temperature of one device by (122,7 – 115) = 7,7 K.
