
- •Основные обозначения
- •Введение
- •СПЕКТРАЛЬНЫЕ (ОПТИЧЕСКИЕ) МЕТОДЫ АНАЛИЗА
- •Основные характеристики электромагнитного излучения
- •Спектр электромагнитных колебаний
- •Глава 1. Абсорбционная спектроскопия
- •1.1. Законы поглощения света
- •1.2.2. Спектры поглощения
- •1.2.3. Устройство приборов
- •1.2.4. Практическое применение
- •1. Определение фенолов.
- •2. Определение аминов.
- •3. Определение кетонов.
- •1.2.5. Практические работы
- •Работа 1. Определение хрома дифенилкарбазидным методом
- •Выполнение работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •1.3. Инфракрасная (колебательная) спектроскопия
- •1.3.1. Элементарная теория колебательных спектров
- •1.3.2. Спектры поглощения
- •Количественный анализ по инфракрасным спектрам.
- •1.3.4. Устройство приборов
- •1.3.5. Практические работы
- •Выполнение работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •Глава 2. Эмиссионная спектроскопия
- •2.3. Практические работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА
- •Глава 3. Кондуктометрия
- •3.1. Электропроводность растворов электролитов
- •3.1.1. Удельная электропроводность
- •3.1.2. Эквивалентная электропроводность
- •3.2. Электропроводность природных вод
- •3.3. Кондуктометрическое титрование
- •Титрование сильной кислоты сильным основанием
- •Титрование слабой кислоты сильным основанием
- •3.4. Практические работы
- •Кондуктометр ОК 102/1
- •Порядок работы на приборе
- •Выполнение работы
- •Работа 2. Определение удельной электропроводности воды
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •Глава 4. Потенциометрия
- •4.1. Электродный потенциал
- •4.2. Электроды сравнения
- •4.3. Диффузионный потенциал
- •4.4. Прямая потенциометрия
- •4.4.2. Ионоселективные электроды
- •4.5. Потенциометрическое титрование
- •4.7. Практические работы
- •Порядок работы
- •Ход работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •Глава 5. Вольтамперометрия
- •5.1. Кривая ток-потенциал
- •5.2. Полярографический фон
- •5.3. Диффузионный ток
- •5.4. Количественный полярографический анализ
- •5.5. Качественный полярографический анализ
- •5.6. Полярографическая установка
- •5.7. Хроноамперометрия с линейной разверткой потенциала
- •5.8. Инверсионная вольтамперометрия
- •5.9. Практическое применение
- •5.10. Практические работы
- •Работа 1. Обнаружение ионов Cu2+, Cd2+, Zn2+, Mn2+
- •Выполнение работы
- •Работа 2. Обнаружение ионов Pb2+ и Tl+
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •Глава 6. Электрофорез
- •6.1. Общие принципы электрофореза
- •1. Форма и величина белковой молекулы.
- •2. Электрическое поле.
- •3. Характер буфера и его ионная сила.
- •4. Природа носителя.
- •6.2. Электрофорез на бумаге и ацетате целлюлозы
- •6.3. Электрофорез в гелях
- •6.4. Диск-электрофорез
- •6.5. Применение метода диск-электрофореза
- •6.6. Практические работы
- •Выполнение работы
- •Проведение электрофореза
- •Обнаружение белковых фракций
- •Хранение и реставрация гелей
- •Техника безопасности при работе методом электрофореза
- •Контрольные вопросы
- •Литература
- •6.8. Практические работы
- •Выполнение работы
- •Контрольные вопросы
- •Выполнение работы
- •Контрольные вопросы
- •Контрольные вопросы
- •Литература
- •ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА
- •Глава 7. Общие принципы хроматографии
- •7.2. Классификация хроматографических методов
- •7.3. Применение методов хроматографии
- •Контрольные вопросы
- •Литература
- •Глава 8. Жидкостная хроматография
- •8.1.1. Хроматография на колонке
- •8.1.2. Тонкослойная хроматография (ТСХ)
- •8.1.3. Практические работы
- •Выполнение работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •8.2. Жидкостно-жидкостная (распределительная) хроматография
- •8.2.1. Теоретические основы метода
- •8.2.2. Хроматография на бумаге
- •8.2.3. Практические работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •8.3. Ионообменная хроматография
- •8.3.1. Теоретические основы метода
- •Контрольные вопросы
- •Литература
- •8.4. Проникающая или эксклюзионная хроматорафия
- •8.4.1. Теоретические основы метода
- •8.4.2. Практические работы
- •Выполнение работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •8.5. Высокоэффективная жидкостная хроматография (ВЭЖХ)
- •8.5.1. Теоретические основы метода
- •8.5.2. Практические работы
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •8.6. Понятие об аффинной или биоспецифической хроматографии
- •Контрольные вопросы
- •Литература
- •Глава 9. Газовая хроматография
- •9.1. Теоретические основы метода
- •9.2. Аппаратурное оформление газовой хроматографии
- •9.3. Качественный и количественный анализ
- •9.4. Применение газовой хроматографии
- •9.5. Практические работы
- •Контрольные вопросы
- •Литература

Основные характеристики электромагнитного излучения
Электромагнитное излучение имеет двойственную природу- оно обладает волновыми и корпускулярными свойствами. К волновым характеристикам относятся частота колебаний, длина волны и волновое число, к квантовым – энергия квантов.
Частота колебаний (ν) – число колебаний в единицу времени. Единицей частоты служит герц (Гц) или с-1 (1 Гц =1 колебание в секунду).
Длина волны (λ) есть расстояние между соседними максимумами. Длина волны в Международной системе единиц (СИ) измеряется в метрах (м) и его долях - сантиметрах (см), миллиметрах (мм), нанометрах (1 нм= 10-9 м), ангстремах (1А0=10-10
м).
Еще одной весьма удобной величиной является волновое число (ν ):_
ν =1/λ [см-1].
Волновое число показывает, сколько длин волн данного излучения укладывается в 1 см. По сложившейся традиции излучение в инфракрасной области определяют в волновых числах.
Спектр электромагнитных колебаний удобно разбить на несколько областей (табл. 1.1.). Деление спектра на области важно потому, что взаимодействие излучения с изучаемой системой в каждой из них протекает по различным механизмам и
дает разную информацию. |
Таблица 1.1. |
|
|
Спектр электромагнитных колебаний |
|
|
|
|
|
Область спектра |
Интервал длин волн (λ) |
|
Радиоволны |
> 1 м |
|
Микроволны |
10-3–1 м |
|
Инфракрасное излучение |
750–106 нм или 7,5 10–7 –10-3 м |
|
Видимый свет |
400–750 нм или 4 10–7–7,5 10–7 м |
|
Ультрафиолетовое излучение |
10–400 нм или 10-8 – 4 10–7 м |
|
Рентгеновское излучение |
10-2–10 нм или 10-11–10-8 м |
|
γ-Излучение |
10-4–0,1 нм или 10-13–10-10 м |
7

Каждая область электромагнитных колебаний охватывает определенный интервал длин волн и характеризуется определенным уровнем энергии. Энергия электромагнитного излучения определяется соотношением Бора:
∆Е=hν=h c/λ=hcν ,
где h - постоянная Планка, равная 6,62 10-34 Дж с,
с - скорость света в вакууме (с=3 108 м/c).
Количество поглощаемой энергии может иметь только строго определенные значения, т.е. поглощается излучение только определенной частоты. Поглощение излучения, а следовательно, и энергии происходит в том случае, если квант излучения соответствует разности между двумя энергетическими уровнями облучаемого вещества.
В органической химии для исследования строения молекул чаще всего используются следующие области, различающиеся энергией квантов:
-наибольшая энергия требуется для возбуждения электронов; эта энергия соответствует излучению в ультрафиолетовой
ивидимой области (электронная спектроскопия);
-меньшие затраты энергии необходимы для изменения колебательных уровней молекулы, связанных с изменением длин связей и углов в инфракрасной области (колебательная спектроскопия);
-еще меньшая энергия необходима для переориентации спинов ядер, которая может вызываться квантами радиочастотного излучения (спектроскопия ядерного магнитного резонанса).
8