6. Метод Хука-Дживса
k |
xk |
f(xk) |
ϰk |
|
||
0 |
-4.47214 |
1.00000 |
140.7771 |
- |
- |
|
1 |
-1.04304 |
-2.59463 |
-17.8447 |
0.844582 |
4.967905 |
|
2 |
-1.79761 |
-4.53732 |
-26.7194 |
1.33035 |
2.084083 |
|
3 |
-2.24214 |
-4.48834 |
-27.9994 |
0.965984 |
0.447225 |
|
4 |
-2.24145 |
-4.47526 |
-27.9999 |
1.037891 |
0.013103 |
|
5 |
-2.23608 |
-4.47225 |
-28.0000 |
1.238443 |
0.006156 |
|
ε = 0,01
7 .1 Поиск при помощи регулярного симплекса ( )
Параметры поиска:
– Длина ребра первого симплекса
– Коэффициент редукции
– Условие останова
k |
xk |
f(xk) |
lk |
|
||||
1 |
-4.47214 |
1 |
140.7771 |
1 |
25.65736 |
|||
2 |
-4.47214 |
0.42265 |
117.6571 |
1 |
25.20278 |
|||
3 |
-3.97214 |
0.133975 |
85.71844 |
1 |
20.82466 |
|||
4 |
-3.97214 |
-0.44338 |
66.75313 |
1 |
20.36422 |
|||
5 |
-3.47214 |
-0.73205 |
41.62389 |
1 |
16.00472 |
|||
… |
||||||||
15 |
-2.34714 |
-4.41266 |
-27.8889 |
0.25 |
0.17167 |
|||
16 |
-2.22214 |
-4.34049 |
-27.9542 |
0.25 |
0.15026 |
|||
17 |
-2.22214 |
-4.41266 |
-27.9915 |
0.125 |
0.03326 |
|||
18 |
-2.22214 |
-4.44874 |
-27.9985 |
0.0625 |
0.006846 |
|||
ε = 0,01
7.2 Поиск при помощи регулярного симплекса ( )
k |
xk |
f(xk) |
lk |
|
|||
1 |
-4.47214 |
1 |
140.7771 |
1.5 |
38.12894 |
||
2 |
-4.47214 |
0.133975 |
106.8471 |
1.5 |
37.11433 |
||
3 |
-3.72214 |
-0.29904 |
62.30065 |
1.5 |
27.29626 |
||
4 |
-3.72214 |
-1.16506 |
37.71871 |
1.5 |
26.26359 |
||
5 |
-2.97214 |
-1.59808 |
8.493448 |
1.5 |
16.57981 |
||
6 |
-2.97214 |
-2.4641 |
-6.74042 |
1.5 |
15.51173 |
||
7 |
-2.22214 |
-2.89711 |
-20.6445 |
1.5 |
6.574878 |
||
8 |
-2.22214 |
-3.76314 |
-26.5303 |
1.5 |
5.475947 |
||
9 |
-2.22214 |
-4.19615 |
-27.7857 |
0.75 |
1.221098 |
||
10 |
-2.22214 |
-4.41266 |
-27.9915 |
0.375 |
0.244179 |
||
11 |
-2.22214 |
-4.52091 |
-27.989 |
0.1875 |
0.055751 |
||
12 |
-2.26901 |
-4.49385 |
-27.9949 |
0.09375 |
0.020933 |
||
13 |
-2.24557 |
-4.48032 |
-27.9996 |
0.046875 |
0.004231 |
||
ε = 0,01
