
- •1. Современная космологическая модель
- •Суть теории инфляции
- •Происхождение Вселенной
- •Тёмная материя и тёмная энергия
- •2. Синтетическая теория эволюции
- •Хромосомная теория наследственности
- •Взаимодействия неаллельных генов
- •Хронология эволюции
- •Основные особенности эволюционного прогресса
- •Ароморфоз
- •Симбиоз
- •Преадаптации
- •3.Современная теория наследственности
- •Репликация днк
- •Матричная (информационная) рнк
- •Рибосомная рнк
- •Транспортные рнк
- •Механизм синтеза белка
- •Транскрипция
- •Трансляция
- •Геном эукариот: общие сведения
- •Геном человека
- •Понятие онтогенеза. Онтогенез у многоклеточных животных
- •4. Строение и эволюция земли
- •Геологическое развитие и строение Земли
- •Земная кора
- •Тектоника плит
- •Современное состояние тектоники плит
- •Сила, двигающая плиты
- •Дивергентные границы или границы раздвижения плит
- •5. Стандартная модель физики частиц
- •Квантовая теория поля (полей) (ктп)
- •Характеристики частиц
- •Взаимодействие между частицами
- •Квантовые поля
- •Квантовая электродинамика
- •Квантовая теория слабого взаимодействия
- •Теория сильного взаимодействия
- •Стандартная модель
- •Классификация
- •Механизм Хиггса
- •Конфайнмент и адронизация
Конфайнмент и адронизация
Одно
из самых важных свойств сильного
взаимодействия — конфайнмент.
Конфайнмент — это пленение кварков
внутри адронов. Проявляется это в том,
что чем дальше кварк пытается отдалиться
от соседних кварков, тем сильнее между
ними притяжение.
Глюонные силы, связывающие кварки в протоне, не ослабевают при удалении одного кварка от другого. В результате при попытке «вырвать» кварк из протона глюонное поле порождает дополнительную кварк-антикварковую пару, и от протона уже отделяется не кварк, а пи-мезон. Пи-мезон уже может улететь сколь угодно далеко от протона, потому что силы между адронами ослабевают с расстоянием.
Можно это представить себе так. При попытке кварка отдалиться глюонное поле натягивается в виде струны и стремится его удержать. Если «убегающий» кварк имеет невысокую энергию, то эта струна возвращает его обратно в протон. Если же импульс кварка относительно протона большой, то струна лопается, и на месте разрыва возникает кварк-антикварковая пара. В результате кварку всё же удается «сбежать» из протона, но не в свободном виде, а в паре с антикварком, то есть в виде мезона. Энергия убегающего кварка частично тратится на рождение кварк-антикварковой пары.
В типичном протон-протонном столкновении при высокой энергии кварк, получив очень сильный удар, вылетает из протона с очень большим импульсом. Возникающая глюонная струна, как правило, рвется многократно, и в результате рождается множество адронов. Обычно это легчайшие мезоны — пионы, каоны и т. п. Такой процесс превращения набора партонов в набор адронов называется адронизацией.
Если попытаться разделить обычную кварк-антикварковую пару на две отдельные частицы, то между ними натягивается глюонная струна. Если струна становится слишком длинной, то она рвется, и в месте разрыва образуются новые кварк-антикварковые пары.
Как эксперименты, так и численное моделирование показывают, что, хотя рожденные адроны могут вылетать под самыми разными углами, они предпочитают группироваться около направления движения жестких партонов. В случае рассеяния партонов на большой угол такие адроны порождают адронные струи:
Физики пока не научились вычислять из первых принципов процесс адронизации. Поэтому связь между теорией (которая обычно работает со столкновениями партонов) и экспериментом (в котором детектируются конечные адроны) не столь непосредственна, как, например, в электрон-позитронных столкновениях. Адронизацию приходится моделировать, и соответствующие программы моделирования играют важную роль при детальной обработке экспериментальных данных.