Скачиваний:
2
Добавлен:
08.09.2024
Размер:
1.37 Mб
Скачать

2. Построение графиков 1.3.

1

N = 500;

2

t_fin = 0 . 0 1 ;

3

diap

= l i n s p a c e ( 0 . 0 2 , 5000 , N) ;

4

w_s_m = z er os (1 , N) ;

5

df_m = zeros (1 , N) ;

6

i =

1 ;

7

 

 

8

f o r

k = diap

9k_r = k ;

10

st =

sim (" sim1 . s l x ") ;

11

[ mag , phase ,w]=bode ( s t . bode . values ) ;

12

Lp =

20 log10 ( squeeze (mag) ) ;

13w = squeeze (w) ;

14P = squeeze ( phase ) ;

15

 

 

 

 

16

ss

=

f l i p l r ( sign (Lp) ’) ;

17

index

= length (w) − f i n d ( ss == −1 ss (1) , 1) + 2 ;

18

x1

=

log10

(w( index − 1) ) ;

19

x2

=

log10

(w( index ) ) ;

20y1 = Lp( index − 1) ;

21y2 = Lp( index ) ;

22

w_s_m( i )

= 10^(x2 + ( x2 − x1 ) ( y2 ) /( y1 − y2 ) ) ;

23

df_m( i )

= 90 − atand (T w_s_m( i ) ) ;

24

i = i + 1 ;

25

end

 

26

27f i g u r e

28plot ( diap , w_s_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ ) ;

29x l a b e l ( ’k_r ’ ) ;

30

y l a b e l ( ’w_{

} ’ ) ;

31

grid on

 

32f i g u r e

33plot ( diap , df_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ ) ;

34x l a b e l ( ’k_r ’ ) ;

35

y l a b e l ( ’ \ Delta \ phi ’ ) ;

36

grid on

21

3.Код графиков для 1.4. Модель "sim2.slx"отличается от "sim1.slx только точками входы-выхода для bode,

1

N = 500;

2

T =

1 . 1 ;

3

 

 

4

diap

= l i n s p a c e ( 0 . 0 1 , 5000 , N) ;

5

w_p_m = zeros (1 , N) ;

6

A_m = z ero s (1 , N) ;

7

i =

1 ;

8

 

 

9

f o r

k = diap

10

 

k_r = k ;

11

 

st = sim (" sim2 . s l x ") ;

12

 

[ mag , phase ,w]=bode ( s t . bode . values ) ;

13

 

Lp = 20 log10 ( squeeze (mag) ) ;

14w = squeeze (w) ;

15P = squeeze ( phase ) ;

16

peaks = findpeaks (Lp) ;

17

i f length ( peaks ) < 1

18

A_m( i ) = 0 ;

19w_p_m( i ) = −i n f ;

20e l s e

21

A_m( i ) =

peaks (1) ;

22

w_p_m( i )

= w( f i n d (Lp == peaks (1) , 1) ) ;

23

end

 

24

i = i + 1 ;

 

25

end

 

26

27plot ( diap , w_p_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ ) ;

28x l a b e l ( ’k_r ’ ) ;

29y l a b e l ( ’ \omega_p(k_r) ’ ) ;

30 grid on ;

31f i g u r e

32plot ( diap , A_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ )

33x l a b e l ( ’k_r ’ ) ;

34y l a b e l ( ’M(k_r) ’ ) ;

35 grid on ;

22

4. График к 3.2.

1

f o r i = [ 0 . 1 , 1 , 2 , 3 . 5 ]

2

tau = i ;

3T = 1 . 1 ;

4

k

= l i n s p a c e ( 0 . 0 0

1 , 50000 , 10000000) ;

5

I1

= ( 0 .5 5 + 1./(2 k )

+ tau^2 k/2) ;

6

r

= −max(−1 I1 ) ;

 

 

7

k_min = k ( f i n d ( I1

==

r ) ) ;

8k_r = k_min ;

9

 

 

 

10

st = sim (" sim2 . s l x ") ;

 

11

[ step_resp ,

time ] =

step ( s t . sys . values ) ;

12

 

 

 

13

plot ( time ,

step_resp ,

’ LineWidth ’ ,2) ;

14

grid on ;

 

 

15x l a b e l ( ’ t ’ )

16y l a b e l ( ’h_1( t ) ’ )

17hold on

18end

19

xlim ( [ 0 1 1 ] )

20

legend ( ’ \tau_1^2 = 0.1 ’ , ’ \tau_1^2 = 1 ’ , ’ \tau_1^2 = 2 ’ , ’ \

 

tau_1^2 = 3.5 ’ ) ;

21

grid

on ;

22

hold

o f f

23

Соседние файлы в папке Лабы по линейным СУ