

2. Построение графиков 1.3.
1 |
N = 500; |
|
2 |
t_fin = 0 . 0 1 ; |
|
3 |
diap |
= l i n s p a c e ( 0 . 0 2 , 5000 , N) ; |
4 |
w_s_m = z er os (1 , N) ; |
|
5 |
df_m = zeros (1 , N) ; |
|
6 |
i = |
1 ; |
7 |
|
|
8 |
f o r |
k = diap |
9k_r = k ;
10 |
st = |
sim (" sim1 . s l x ") ; |
11 |
[ mag , phase ,w]=bode ( s t . bode . values ) ; |
|
12 |
Lp = |
20 log10 ( squeeze (mag) ) ; |
13w = squeeze (w) ;
14P = squeeze ( phase ) ;
15 |
|
|
|
|
16 |
ss |
= |
f l i p l r ( sign (Lp) ’) ; |
|
17 |
index |
= length (w) − f i n d ( ss == −1 ss (1) , 1) + 2 ; |
||
18 |
x1 |
= |
log10 |
(w( index − 1) ) ; |
19 |
x2 |
= |
log10 |
(w( index ) ) ; |
20y1 = Lp( index − 1) ;
21y2 = Lp( index ) ;
22 |
w_s_m( i ) |
= 10^(x2 + ( x2 − x1 ) ( y2 ) /( y1 − y2 ) ) ; |
23 |
df_m( i ) |
= 90 − atand (T w_s_m( i ) ) ; |
24 |
i = i + 1 ; |
|
25 |
end |
|
26
27f i g u r e
28plot ( diap , w_s_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ ) ;
29x l a b e l ( ’k_r ’ ) ;
30 |
y l a b e l ( ’w_{ |
} ’ ) ; |
31 |
grid on |
|
32f i g u r e
33plot ( diap , df_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ ) ;
34x l a b e l ( ’k_r ’ ) ;
35 |
y l a b e l ( ’ \ Delta \ phi ’ ) ; |
36 |
grid on |
21

3.Код графиков для 1.4. Модель "sim2.slx"отличается от "sim1.slx только точками входы-выхода для bode,
1 |
N = 500; |
|
2 |
T = |
1 . 1 ; |
3 |
|
|
4 |
diap |
= l i n s p a c e ( 0 . 0 1 , 5000 , N) ; |
5 |
w_p_m = zeros (1 , N) ; |
|
6 |
A_m = z ero s (1 , N) ; |
|
7 |
i = |
1 ; |
8 |
|
|
9 |
f o r |
k = diap |
10 |
|
k_r = k ; |
11 |
|
st = sim (" sim2 . s l x ") ; |
12 |
|
[ mag , phase ,w]=bode ( s t . bode . values ) ; |
13 |
|
Lp = 20 log10 ( squeeze (mag) ) ; |
14w = squeeze (w) ;
15P = squeeze ( phase ) ;
16 |
peaks = findpeaks (Lp) ; |
17 |
i f length ( peaks ) < 1 |
18 |
A_m( i ) = 0 ; |
19w_p_m( i ) = −i n f ;
20e l s e
21 |
A_m( i ) = |
peaks (1) ; |
22 |
w_p_m( i ) |
= w( f i n d (Lp == peaks (1) , 1) ) ; |
23 |
end |
|
24 |
i = i + 1 ; |
|
25 |
end |
|
26
27plot ( diap , w_p_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ ) ;
28x l a b e l ( ’k_r ’ ) ;
29y l a b e l ( ’ \omega_p(k_r) ’ ) ;
30 grid on ;
31f i g u r e
32plot ( diap , A_m, ’ LineWidth ’ ,1 , ’ c o l o r ’ , ’ blue ’ )
33x l a b e l ( ’k_r ’ ) ;
34y l a b e l ( ’M(k_r) ’ ) ;
35 grid on ;
22

4. График к 3.2.
1 |
f o r i = [ 0 . 1 , 1 , 2 , 3 . 5 ] |
2 |
tau = i ; |
3T = 1 . 1 ;
4 |
k |
= l i n s p a c e ( 0 . 0 0 |
1 , 50000 , 10000000) ; |
|
5 |
I1 |
= ( 0 .5 5 + 1./(2 k ) |
+ tau^2 k/2) ; |
|
6 |
r |
= −max(−1 I1 ) ; |
|
|
7 |
k_min = k ( f i n d ( I1 |
== |
r ) ) ; |
8k_r = k_min ;
9 |
|
|
|
10 |
st = sim (" sim2 . s l x ") ; |
|
|
11 |
[ step_resp , |
time ] = |
step ( s t . sys . values ) ; |
12 |
|
|
|
13 |
plot ( time , |
step_resp , |
’ LineWidth ’ ,2) ; |
14 |
grid on ; |
|
|
15x l a b e l ( ’ t ’ )
16y l a b e l ( ’h_1( t ) ’ )
17hold on
18end
19 |
xlim ( [ 0 1 1 ] ) |
|
20 |
legend ( ’ \tau_1^2 = 0.1 ’ , ’ \tau_1^2 = 1 ’ , ’ \tau_1^2 = 2 ’ , ’ \ |
|
|
tau_1^2 = 3.5 ’ ) ; |
|
21 |
grid |
on ; |
22 |
hold |
o f f |
23