Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УСР 1. Пластиды растительных клеток.docx
Скачиваний:
2
Добавлен:
13.08.2024
Размер:
35.99 Кб
Скачать

1.2 Структура и функции хлоропластов

Хлоропласты (рис.1.5) (от греч. «chloros» – зеленый, «plastos» – вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов:

  • органоиды зеленого цвета

  • длиной 5-10 мкм и шириной 2-4 мкм.

  • У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм.

  • У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму.

  • Количество в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов.

  • Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По видимому, это зависит от внешних воздействий (интенсивность освещения).

  • От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды, имеющие вид дисков.

  • Тилакоиды образуют стопки наподобие столбика монет,- граны. Между собой граны соединены другими тилакоидами (ламелы, фреты). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл.

  • Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях (a, b, c, d). У высших растений и водорослей в качестве основного пигмента содержится хлорофилл, а. В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора.

  • Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен

Свойства хлоропластов:

  • полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

  • способность к самостоятельному движению (уходят от прямых солнечных лучей);

  • способность к самостоятельному размножению.

  • Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов:

  • Основная функция хлоропластов – фотосинтез.

  • В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

  • осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков.

Фотосинтез основная и главная функция хлоропластов. В хлоропластах осуществляется фотосинтез, в результате которого из углекислого газа и воды с использованием энергии света образуется органическое вещество и выделяется кислород. Процесс фотосинтеза подразделяется на световую и темновую фазы.

Световые реакции. Преобразование энергии света в энергию химических связей начинается в реакционных центрах, входящих в состав мембран тилакоидов. В составе реакционных центров обнаруживаются разнообразные сочетания пигментов: хлорофиллы а и b, каротиноиды и другие. Кроме указанных пигментов в мембранах обнаруживаются разнообразные вещества – переносчики электронов и протонов. Основные сочетания пигментов и переносчиков называются фотосистемы: фотосистема I и фотосистема II.

Универсальным способом образования АТФ является механизм нециклического фотофосфорилирования. Энергия света, поглощенная пигментами, преобразуется в энергию электронов. Свободные электроны образуются при фотолизе (фотоокислении) воды – расщеплении молекулы Н2О с затратой световой энергии. При фотолизе воды выделяется молекулярный кислород. Энергия электронов используется для создания протонных резервуаров внутри тилакоидов и формирования электрохимических потенциалов на мембранах тилакоидов. В свою очередь, энергия электрохимического потенциала используется для синтеза АТФ. Электроны, потерявшие энергию, используются для восстановления НАДФ. В действительности световые реакции протекают более сложно.

Фотосистема II поглощает высокоэнергетические кванты света. Электроны хлорофилла переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон с избытком энергии. Окисленный хлорофилл отщепляет один электрон от молекулы воды. Вода разлагается на протон Н+ и свободный радикал НО. Два радикала НО- объединяются в молекулу Н2О2, которая разлагается каталазой на Н2О и О2.

Процесс расщепления воды под воздействием света называется фотолиз. При фотолизе выделяется молекулярный кислород как побочный продукт световых реакций фотосинтеза:

4 Н2О → 4 Н+ + 4 НО· + 4 ē; 4 НО· → 2 Н2О2 → 2 Н2О + О2↑

Высокоэнергетические электроны от молекул хлорофилла присоединяются к хинонам, образуя восстановленные хиноны (KoQ 2–). Восстановленные хиноны диффундируют на внешнюю сторону мембраны тилакоида (к строме). Здесь к хинонам присоединяются протоны, которые всегда присутствуют в водных растворах вследствие электролитической диссоциации воды. Хиноны вместе с протонами диффундируют на внутреннюю сторону мембраны (к матриксу тилакоида). Под воздействием цитохромов b протоны отщепляются от хинонов и переходят в матрикс тилакоида. Затем хиноны вновь диффундируют к строме, где вновь присоединяют протоны. Таким образом, строма служит источником протонов, а матрикс тилакоидов – протонным резервуаром. Электроны, частично израсходовавшие энергию на перенос протонов, отщепляются от хинонов и поступают на промежуточный переносчик – цитохром f.

Фотосистема I поглощает низкоэнергетические кванты света. Электроны хлорофилла фотосистемы I переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон. Потерю электронов молекулы хлорофилла восполняют, забирая электроны от цитохромов f. Электроны от фотосистемы I через промежуточные мембранные переносчики (ферредоксин и другие) используются для восстановления немембранного переносчика электронов и протонов НАДФ:

НАДФ+ + 2 ē + 2 Н+ → НАДФ·Н+Н+.

Избыток протонов из матрикса переходит через канал АТФазы в строму. Энергия электрохимического потенциала используется для синтеза АТФ из АДФ и неорганического фосфата. В итоге энергия света расходуется на синтез АТФ и на восстановление НАДФ.

Темновые реакции. АТФ и НАДФ·Н+Н+, образовавшиеся в ходе световых реакций, используются для восстановления СО2 и образования глюкозы. Образовавшаяся глюкоза превращается в первичный крахмал. Первичный крахмал в дальнейшем гидролизуется с образованием глюкозы. Эта глюкоза транспортируется за пределы хлоропласта: в остальные клетки и органы растения. Здесь она превращается во вторичный крахмал, используется для дыхания и для биосинтеза кислот, аминокислот и других веществ. Суммарное уравнение фотосинтеза записывается следующим образом:

6 СО2 + 6 Н2О + световая энергия → С6Н12О6 + 6 О2 + тепло

Существует несколько механизмов темновых реакций. Универсальным способом фиксации СО2 является цикл Кальвина. Пятиуглеродный сахар рибулозодифосфат с помощью РДФ-карбоксилазы присоединяет одну молекулу СО2. Образуется неустойчивое шестиуглеродное соединение, которое разлагается на две молекулы фосфоглицериновой кислоты (ФГК). С помощью АТФ и НАДФ·Н+Н+ каждая молекула ФГК восстанавливается до фосфоглицеринового альдегида (ФГА). Одна шестая часть молекул ФГА в ходе реакций изомеризации и димеризации образуют фруктозу, которая превращается в глюкозу. Большая часть ФГА (5/6) используется на образование рибулозодифосфата. [1]