Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РЕФЕРАТ НХ6ГРУППА.docx
Скачиваний:
0
Добавлен:
13.08.2024
Размер:
771.19 Кб
Скачать

1.7 Кислородсодержащие кислоты и их соли.

Сернистая, селенистая и теллуристая кислоты. Строение молекул и анионов кислот. Физические и химические свойства. Их соли. Применение.

Серная, селеновая и теллуровая кислоты. Строение молекул и анионов кислот. Физические и химические свойства. Свойства разбавленной и концентрированной серной кислоты. Состав продуктов ее взаимодействия с металлами и неметаллами. Промышленные способы получения серной кислоты. Олеум. Применение серной кислоты. Сульфаты и гидросульфаты. Купоросы и квасцы. Их применение.

Полисерные, пероксосерные, политионовые кислоты. Строение молекул. Химические свойства, получение. Соли и их практическое использование.

Биологическая роль и химические основы применения серы, селена и их соединений. Загрязнение биосферы соединениями серы.

Сила кислот (в свободном состоянии выделена лишь Н2SeO3, свойства Н2SO3 и Н2TeO3, оцениваются по свойствам соответствующих полей) уменьшается в ряду Н2SO3 - Н2SeO3 - Н2TeO3. В отличие от селенитов и теллуритов сернистая кислота и ее соли обладают выраженными восстановительными свойствами. Сульфиты в водных растворах медленно окисляются кислородом воздуха: 2SO32- + О2 SO42- (аналогичная реакция, катализируемая оксидом азота NO, в атмосфере служит источником кислотных дождей).

Сернистая кислота действует как мягкий восстановитель в многочисленных реакциях с солями металлов:

Fe2(SO4)3 + SO2 + 2H2O 2FeSO4 + 2H2SO4

У селенистой и теллуристой кислот восстановительные свойства выражены слабее, то есть окислить их до производных Se(VI) и Te(VI) значительно труднее.

окислительные свойства H2TeO3 выражены сильнее, чем у сернистой кислоты. Соединения Se(IV) проявляют более сильные окислительные свойства, чем соединения S(IV) и Te(IV). Например, водный раствор SO2 восстанавливает селенистую кислоту:

H2SeO3 + 2 SO2 + H2O Se + 2H2SO4

Аналогично протекает реакция с H2TeO3.H2SO4 – бесцветная маслянистая жидкость, летучая, смешивается с водой в любфх отношених.

Оксокислоты халькогенов (VI) H2SO4, H2SeO4 и H6TeO6 синтезируют окислением их диоксидов (или соответствующих им кислот):

H2SeO3 + Н2О2 H2SeO4 + Н2О

5TeO2 + 2KMnO4 + 6HNO3 + 12 Н2О 5H6TeO6 + 2KNO3 + 2Mn(NO3)2 ,

а также окислением простых веществ сильными окислителями:

5Te + 6HClO3 + 12H2O 5H6TeO6 + 3Cl2 ,

или обменными реакциями:

BaTeO4 + H2SO4 + 2H2O H6TeO6 + BaSO4.

В молекуле H2SO4 сера тетраэдрически окружена двумя гидроксильными (ОН) группами и двумя атомами кислорода. Бесцветные, похожие на лед кристаллы H2SO4 имеют слоистую структуру, в которой каждая молекула H2SO4 соединена с четырьмя соседними молекулами прочными водородными связями, образуя единый пространственный каркас. При температуре 10.48оС H2SO4 плавится с образованием тяжелой маслянистой жидкости, кипящей при 280оС. У жидкой H2SO4 структура почти такая же, как у твердой, только целостность пространственного каркаса нарушена, и его можно представить как совокупность микрокристалликов, постоянно меняющих свою форму. H2SO4 смешивается с водой в любых соотношениях, что сопровождается образованием гидратов H2SO4. n H2O. Теплота гидратации настолько велика, что смесь может даже закипеть.

Жидкая H2SO4 удивительно похожа на воду со всеми структурными особенностями и аномалиями. Здесь та же система сильных водородных связей, что и в воде, почти такой же прочный пространственный каркас, такие же аномально высокие вязкость, поверхностное натяжение, температуры плавления и кипения.

Серная и селеновая кислоты являются сильными двухосновными кислотами и близки по структуре и свойствам между собой.

Строение ортотеллуровой кислоты H6TeO6 отличается от строения серной и селеновой кислот. Кристаллическая структура твердой H6TeO6 построена из молекул правильной октаэдрической формы, которые сохраняют свою форму и в растворах. Селеновая кислота более сильный окислитель, чем Н2SO4 и Н6ТеО6. Она растворяет без нагревания Cu и даже Au:

2Au + 6H2SеO4 Au2(SeO4)3 + 3 H2SeO3 + 2H2O,

окисляет ионы галогенидов, кроме фторида, до свободных галогенов, под ее действием воспламеняется клетчатка. Ортотеллуровая кислота также более сильный окислитель, чем серная кислота. Наиболее частым продуктом восстановления H2SeO4 и H6TeO6 являются простые вещества.

Серная кислота обладает сильными окислительными свойствами только в концентрированном виде и при нагревании:

Cu + 2 H2SO4 CuSO4 + SO2 + 2H2O .

Продуктами ее восстановления в зависимости от условий проведения реакций могут быть SO2 (при избытке H2SO4), H2S, S, , политионаты (при недостатке H2SO4).

H2SеO4, например, выделяет хлор из концентрированной HCl:

H2SеO4 + 2HCl = =Cl2 + H2SeO3 + H2O.

Химические свойства разбавленной серной кислоты. Разбавленная серная кислота — сильный электролит, она проявляет общие свойства кислот: меняет цвет индикаторов и образует соли в реакциях с металлами, основными и амфотерными оксидами, гидроксидами металлов, другими солями. Рассмотрим конкретные примеры.

1. Индикаторы лакмус и метилоранж окрашивают раствор серной кислоты в красный цвет. В разбавленных растворах серная кислота диссоциирует согласно схеме:

2. Образование солей:

а) металлы, расположенные в ряду активности до водорода, вытесняют его из разбавленных растворов серной кислоты:

Zn + Н2SO4 = ZnSO4 + H2↑; Fe + Н2SO4 = FeSO4 + H2↑;

б) реакции серной кислоты с основными и амфотерными оксидами, как правило, требуют небольшого нагревания для увеличения скорости:

СuO + Н2SO4 = CuSO4 + H2O; Al2O3 + 3Н2SO4 = Al2(SO4)3 + 3H2O;

в) в реакциях со щелочами и нерастворимыми основаниями образуются соли и вода (нейтрализация):

2NaOH + Н2SO4 = Na2SO4 + 2H2O или NaOH + Н2SO4 = NaНSO4 + H2O; Сa(OH)2 + Н2SO4 = СаSO4↓ + 2H2O.

Отметим, что при мольном соотношении щёлочи NaOH и кислоты Н2SO4 2 : 1 или избытке NaOH образуется средняя соль (сульфат), а при их соотношении 1 : 1 — кислая соль (гидросульфат). Следовательно, избыток многоосновной (двухосновной) кислоты Н2SO4 приводит к образованию кислых солей;

г) реакции растворов серной кислоты с солями протекают в полном соответствии с условиями реакций ионного обмена:

H2SO4 + Na2CO3 = Na2SO4 + H2O + CO2↑;

H2SO4 + Na2SiO3 = Na2SO4 + H2SiO3↓.

Концентрированная серная кислота — более сильный окислитель, чем разбавленная. Её окислительные свойства проявляются прежде всего в реакциях с металлами. Отметим несколько важных моментов.

Во-первых, происходит восстановление не водорода, а атомов серы. Продуктами восстановления являются SO2, S и Н2S. Состав преимущественно образующихся продуктов зависит как от концентрации кислоты, так и от активности металла как восстановителя. Чем меньше концентрация кислоты и выше активность металла, тем сильнее восстанавливаются атомы серы. В общем виде взаимодействие концентрированной серной кислоты с металлами можно представить схемой:

Так, в реакции с металлами, находящимися в ряду активности после водорода (кроме золота и платины), образуется оксид серы(IV) SO2, например:

В реакциях с металлами, расположенными в ряду активности до водорода, могут образовываться и SO2, и S, и Н2S. Например, cхемы реакций, протекающих при взаимодействии цинка с серной кислотой по мере увеличения её концентрации, выглядят так:

Во-вторых, некоторые сравнительно активные металлы (например, железо, алюминий, хром) концентрированной серной кислотой при комнатной температуре пассивируются: на поверхности металла образуется плотная оксидная плёнка. Благодаря пассивации железа возможна перевозка кислоты в стальных цистернах.

Среди других особенностей концентрированной серной кислоты можно отметить следующие. Она способна вытеснять менее сильные или более летучие кислоты (НСl, HNO3, H3PO4, CH3COOH) из их солей:

Концентрированная кислота окисляет сложные органические вещества: обугливает бумагу, древесину, кожу, поэтому необходимо крайне осторожное обращение.

В промышленности серную кислоту получают окислением диоксида серы (сернистый газ, образующийся в процессе сжигания серы или серного колчедана) до триоксида (серного ангидрида) с последующим взаимодействием SO3 с водой. Получаемую данным способом серную кислоту также называют «контактной» (концентрация 92-94 %).

2SO2 + O2 = 2SO3

H2O + SO3 = H2SO4

О́леум

– это масляный раствор серного ангидрида SO3 в 100%-й серной кислоте H2SO4.

Олеум представляет собой вязкую маслянистую бесцветную жидкость или легкоплавкие кристаллы, которые, однако, могут приобретать самые различные оттенки вследствие наличия примесей. Входит в состав серной кислоты, сера – основной компонент кислоты. Олеум – крайне едкое вещество: оставляет сильные ожоги на коже, быстро разъедает многие материалы, за исключением наименее реакционноспособных. Тем не менее, вследствие эффекта пассивации может храниться в стальных ёмкостях. Олеум нельзя разбавлять водой или выливать его в воду из-за сильно экзотермической реакции. Разбавление олеума производится прибавлением его к серной кислоте. При приливании в воду жидкость закипает, образуя туман из серной кислоты. Применяется в промышленности при производстве серной кислоты, капролактама и многих других веществ. В органической химии применяется как сульфирующий, водоотнимающий или окисляющий реагент.



ЗАКЛЮЧЕНИЕ

Халькогены - это группа элементов в периодической таблице, которая включает в себя кислород, серу, селен и теллур. Эти элементы обладают схожими химическими свойствами, такими как высокая электроотрицательность и способность образовывать соединения с металлами.

Халькогены играют важную роль в различных процессах, таких как дыхание, окисление и восстановление, а также в биологических системах. Они также широко используются в промышленности, например, сера используется для производства удобрений и пластмасс, а кислород - для дыхания и в производстве стали.

Халькогены имеют различные аллотропные формы и могут образовывать разнообразные соединения, что делает их важными для различных научных и промышленных приложений.

СПИСОК ЛИТЕРАТУРЫ


  1. Глинка, Н.Л. Общая химия / Н.Л. Глинка – 2010.

  2. Общая химия в формулах, определениях, схемах./ И.Е.Шиманович, М.Л.Павлович, В.Ф. Тикавый, П.М.Малашко

  3. Общая химия./ под редакцией Ю.А. Ершова

  1. Сернистая, селенистая, теллуристая кислоты. Строение, свойства и их солей [Электронный ресурс] /studfile.net – Режим доступа –https://studfile.net/preview/16707408/page:25/– Дата доступа: 11.11.2023.