- •V211 –п Электрическое поле, закон Кулона, напряженность электрического поля
- •1) Вертикально вверх
- •2) Вертикально вниз
- •V212 –м Закон кулона, Напряженность электрического поля
- •2) Не изменится
- •V214 п Электрическое поле. Потенциал, работа, связь напряженности и разности потенциалов
- •4) Не изменится
- •V215м Электрическое поле. Потенциал, работа, связь напряженности и разности потенциалов
- •V217.Электроемкость п. Конденсаторы, Энергия эп
- •1) Уменьшится
- •2) Увеличится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •V218.Электроемкость м. Конденсаторы, Энергия эп
- •1) Не изменится
- •2) Уменьшится
- •3) Увеличится
- •V231 п Магнитное поле. Графическое изображение полей. Индукция мп s231 п Сингл (Магнитное поле движущегося заряда, теорема о циркуляции)
- •C 231 п (Взаимодействие токов. Закон б-с-л)
- •V232 м Магнитное поле. Графическое изображение полей. Индукция мп c 232 м (Взаимодействие токов. Закон б-с-л)
- •S233 м Сингл (Индукция в центре витка и рамки с током, поворот стрелки компаса, теорема о циркуляции)
- •V234 п Магнитное поле. Сила Ампера, сила Лоренца s234 п Сингл (сила Ампера, взаимодействие токов)
- •C234п(Сила Лоренца, магнитный момент)
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •1. Прямая 2. Окружность 3. Спираль 4. Циклоида
- •V235 м Магнитное поле. Сила Ампера, сила Лоренца s235 мСингл (сила Ампера, взаимодействие токов)
- •C235 м(Сила Лоренца, магнитный момент)
- •1) Вниз
- •2) Вверх
- •1) Вправо
- •2) Влево
- •1) Вниз
- •2) Вверх
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •V241п Электромагнитная индукция. Закон Фарадея s241 Сингл п (Магнитный поток, самоиндукция, индуктивность, энергия мп) – 19 заданий
- •C241 Кластер п (Правило Ленца, закон Фарадея) – 19 заданий
- •V011 Кинематика поступательного движения м. Т. В пространстве. Кластер с011(п, 20 шт Графические задачи,)
- •СИнгл 011 Аналитические задачи. П (s011, 15 шт)
- •1) Вертикально вниз
- •2) Вертикально вверх
- •Кластер с014 п Графические задачи, кластеры Кинематика вращательного движения твердого тела.П ( 15 шт)
- •Сингл s014 п Кинематика вращательного движения твердого тела. Аналитические задачи, п (s014, 15 шт)
- •V 041 Динамика вращательного движения. Момент силы. Момент импульса. Момент инерции тел.
- •1) Увеличится
- •2) Не изменится
- •3) Уменьшится
- •1) Увеличится
- •2) Уменьшится
- •3) Не изменится
- •4) Не изменится
- •4) Не изменится
- •1) Увеличится
- •2) Уменьшится
- •3) Не изменится
- •4) Не изменится
- •4) Не изменится
- •V 041 Динамика вращательного движения. Момент силы. Момент импульса. Момент инерции тел.
- •1) Увеличится
- •2) Не изменится
- •3) Уменьшится
- •Кластер с014 п Графические задачи, кластеры Кинематика вращательного движения твердого тела.П ( 15 шт)
- •Сингл s014 п Кинематика вращательного движения твердого тела. Аналитические задачи, п (s014, 15 шт)
- •С ила Лоренца, магнитный момент
- •1. Прямая 2. Окружность 3. Спираль 4. Циклоида
- •Магнитное поле. Графическое изображение полей. Индукция мп
- •Магнитное поле. Сила Ампера, сила Лоренца
- •V241п Электромагнитная индукция. Закон Фарадея s241 Сингл п (Магнитный поток, самоиндукция, индуктивность, энергия мп) – 19 заданий
- •C241 Кластер п (Правило Ленца, закон Фарадея) – 19 заданий
- •V231 п Магнитное поле. Графическое изображение полей. Индукция мп s231 п Сингл (Магнитное поле движущегося заряда, теорема о циркуляции)
- •C 231 п (Взаимодействие токов. Закон б-с-л)
- •V232 м Магнитное поле. Графическое изображение полей. Индукция мп c 232 м (Взаимодействие токов. Закон б-с-л)
- •S233 м Сингл (Индукция в центре витка и рамки с током, поворот стрелки компаса, теорема о циркуляции)
- •V234 п Магнитное поле. Сила Ампера, сила Лоренца s234 п Сингл (сила Ампера, взаимодействие токов)
- •C234п(Сила Лоренца, магнитный момент)
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •1. Прямая 2. Окружность 3. Спираль 4. Циклоида
- •V235 м Магнитное поле. Сила Ампера, сила Лоренца s235 мСингл (сила Ампера, взаимодействие токов)
- •C235 м(Сила Лоренца, магнитный момент)
- •1) Вниз
- •2) Вверх
- •1) Вправо
- •2) Влево
- •1) Вниз
- •2) Вверх
- •1) Влево
- •4) Вправо
- •5) Вниз
- •V211 –п Электрическое поле, закон Кулона, напряженность электрического поля
- •1) Вертикально вверх
- •2) Вертикально вниз
- •V214 п Электрическое поле. Потенциал, работа, связь напряженности и разности потенциалов
- •4) Не изменится
- •V217.Электроемкость п. Конденсаторы, Энергия эп
- •1) Уменьшится
- •2) Увеличится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •V011 Кинематика поступательного движения м. Т. В пространстве. Кластер с011(п, 20 шт Графические задачи,)
- •СИнгл 011 Аналитические задачи. П (s011, 15 шт)
- •1) Вертикально вниз
- •2) Вертикально вверх
- •Кластер с014 п Графические задачи, кластеры Кинематика вращательного движения твердого тела.П ( 15 шт)
- •Сингл s014 п Кинематика вращательного движения твердого тела. Аналитические задачи, п (s014, 15 шт)
- •V021 Динамика поступательного движения. Законы Ньютона
- •4) Не изменится
- •V024 Работа силы. Мощность.Механическая энергия. З.С.Э.
- •V 041 Динамика вращательного движения. Момент силы. Момент импульса. Момент инерции тел.
- •1) Увеличится
- •2) Не изменится
- •3) Уменьшится
- •V211 –п Электрическое поле, закон Кулона, напряженность электрического поля
- •1) Вертикально вверх
- •2) Вертикально вниз
- •V212 –м Закон кулона, Напряженность электрического поля
- •2) Не изменится
- •V214 п Электрическое поле. Потенциал, работа, связь напряженности и разности потенциалов
- •4) Не изменится
- •V215м Электрическое поле. Потенциал, работа, связь напряженности и разности потенциалов
- •V217.Электроемкость п. Конденсаторы, Энергия эп
- •1) Уменьшится
- •2) Увеличится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •V218.Электроемкость м. Конденсаторы, Энергия эп
- •1) Не изменится
- •2) Уменьшится
- •3) Увеличится
- •V211 –п Электрическое поле, закон Кулона, напряженность электрического поля
- •1) Вертикально вверх
- •2) Вертикально вниз
- •V214 п Электрическое поле. Потенциал, работа, связь напряженности и разности потенциалов
- •4) Не изменится
- •V217.Электроемкость п. Конденсаторы, Энергия эп
- •1) Уменьшится
- •2) Увеличится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •3) Не изменится
- •V231 п Магнитное поле. Графическое изображение полей. Индукция мп s231 п Сингл (Магнитное поле движущегося заряда, теорема о циркуляции)
- •C 231 п (Взаимодействие токов. Закон б-с-л)
- •V232 м Магнитное поле. Графическое изображение полей. Индукция мп c 232 м (Взаимодействие токов. Закон б-с-л)
- •S233 м Сингл (Индукция в центре витка и рамки с током, поворот стрелки компаса, теорема о циркуляции)
- •V234 п Магнитное поле. Сила Ампера, сила Лоренца s234 п Сингл (сила Ампера, взаимодействие токов)
- •C234п(Сила Лоренца, магнитный момент)
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •1. Прямая 2. Окружность 3. Спираль 4. Циклоида
- •V235 м Магнитное поле. Сила Ампера, сила Лоренца s235 мСингл (сила Ампера, взаимодействие токов)
- •C235 м(Сила Лоренца, магнитный момент)
- •1) Вниз
- •2) Вверх
- •1) Вправо
- •2) Влево
- •1) Вниз
- •2) Вверх
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •V231 п Магнитное поле. Графическое изображение полей. Индукция мп s231 п Сингл (Магнитное поле движущегося заряда, теорема о циркуляции)
- •C 231 п (Взаимодействие токов. Закон б-с-л)
- •V232 м Магнитное поле. Графическое изображение полей. Индукция мп c 232 м (Взаимодействие токов. Закон б-с-л)
- •S233 м Сингл (Индукция в центре витка и рамки с током, поворот стрелки компаса, теорема о циркуляции)
- •V234 п Магнитное поле. Сила Ампера, сила Лоренца s234 п Сингл (сила Ампера, взаимодействие токов)
- •C234п(Сила Лоренца, магнитный момент)
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •1. Прямая 2. Окружность 3. Спираль 4. Циклоида
- •V235 м Магнитное поле. Сила Ампера, сила Лоренца s235 мСингл (сила Ампера, взаимодействие токов)
- •C235 м(Сила Лоренца, магнитный момент)
- •1) Вниз
- •2) Вверх
- •1) Вправо
- •2) Влево
- •1) Вниз
- •2) Вверх
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •V231 п Магнитное поле. Графическое изображение полей. Индукция мп s231 п Сингл (Магнитное поле движущегося заряда, теорема о циркуляции)
- •C 231 п (Взаимодействие токов. Закон б-с-л)
- •V232 м Магнитное поле. Графическое изображение полей. Индукция мп c 232 м (Взаимодействие токов. Закон б-с-л)
- •S233 м Сингл (Индукция в центре витка и рамки с током, поворот стрелки компаса, теорема о циркуляции)
- •V234 п Магнитное поле. Сила Ампера, сила Лоренца s234 п Сингл (сила Ампера, взаимодействие токов)
- •C234п(Сила Лоренца, магнитный момент)
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •1. Прямая 2. Окружность 3. Спираль 4. Циклоида
- •V235 м Магнитное поле. Сила Ампера, сила Лоренца s235 мСингл (сила Ампера, взаимодействие токов)
- •C235 м(Сила Лоренца, магнитный момент)
- •1) Вниз
- •2) Вверх
- •1) Вправо
- •2) Влево
- •1) Вниз
- •2) Вверх
- •1) Влево
- •4) Вправо
- •5) Вниз
- •2) Вверх
- •3) Вниз
- •V241п Электромагнитная индукция. Закон Фарадея s241 Сингл п (Магнитный поток, самоиндукция, индуктивность, энергия мп) – 19 заданий
- •C241 Кластер п (Правило Ленца, закон Фарадея) – 19 заданий
- •1) Не изменится
- •2) Не изменится
- •4) Не изменится
- •1) Не изменится
- •2) Уменьшится
- •3) Увеличится
- •1) Увеличится
- •2) Уменьшится
- •3) Не изменится
- •V241п Электромагнитная индукция. Закон Фарадея s241 Сингл п (Магнитный поток, самоиндукция, индуктивность, энергия мп) – 19 заданий
- •C241 Кластер п (Правило Ленца, закон Фарадея) – 19 заданий
- •1) Не изменится
- •2) Не изменится
- •4) Не изменится
- •1) Не изменится
- •2) Уменьшится
- •3) Увеличится
- •1) Увеличится
- •2) Уменьшится
- •3) Не изменится
- •V241п Электромагнитная индукция. Закон Фарадея s241 Сингл п (Магнитный поток, самоиндукция, индуктивность, энергия мп) – 19 заданий
- •C241 Кластер п (Правило Ленца, закон Фарадея) – 19 заданий
- •1) Не изменится
- •2) Не изменится
- •4) Не изменится
- •1) Не изменится
- •2) Уменьшится
- •3) Увеличится
- •1) Увеличится
- •2) Уменьшится
- •3) Не изменится
1) Увеличится
2) Уменьшится
3) Не изменится
:2
1 1. [Уд] (ВО1) На рисунке изображена плотность вероятности обнаружения микрочастицы на различных расстояниях от «стенок» ямы. Вероятность её обнаружения на участке равна
1)
2)
3)
4)
:2
1 2. [Уд] (О) На рисунках приведены картины распределения плотности вероятности нахождения микрочастицы в потенциальной яме с бесконечно высокими стенками. Состоянию с квантовым числом n =1 соответствует график под номером
: 4
Дисциплина: Физика
Индекс темы 510 «Физика атомного ядра»
Вариация v511 Радиоактивность. Ядерные реакции
Контроль: П - промежуточный
С511 Кластер ( Радиоактивность. Правила смещения) - 10 заданий
1. [Уд] (ВО1) Ядро атома тория претерпело два α – распада и один β – распад, испустив при этом три γ –кванта. В результате этих превращений получилось ядро
1)
2)
3)
4)
:3
2. [Уд] (ВО1) При радиоактивном распаде ядро превращается в ядро , претерпев ряд α – и β – распадов, количество которых, соответственно, равно
1) 10 α и 8 β
2) 8 α и 10 β
3) 9 α и 10 β
4) 10 α и 10 β
:4
3. [Уд] (ВО1) Чтобы ядро тория превратилось в стабильный изотоп свинца , должно произойти
1) 6 α – распадов и 2 β – распада
2) 7 α – распадов и 3 β – распада
3) 5 α – распадов и 5 β – распадов
4) 4 α – распадов и 6 β – распадов
:1
4. [Уд] (ВО1) В результате радиоактивного альфа – распада радия образуется ядро, содержащее
1) 86 протонов и 222 нейтронов
2) 86 протонов и 136 нейтронов
3) 87 протонов и 138 нейтронов
4) 88 протонов и 137 нейтронов
:2
5. [Уд] (ВО1) Ядро состоит из 90 протонов и 144 нейтронов. После испускания двух β – частиц, а затем одной α – частицы это ядро будет иметь
1) 85 протонов и 140 нейтронов
2) 87 протонов и 140 нейтронов
3) 90 протонов и 140 нейтронов
4) 85 протонов и 148 нейтронов
:3
6. [Уд] (ВО1) В реакции радиоактивного превращения ядра в ядро вылетает одна частица с массой покоя, не равной нулю. Это
1) нейтрон
2) позитрон
3) протон
4) электрон
:4
7. [Уд] (ВО1) Чтобы ядро америция превратилось в стабильный изотоп висмута должно произойти
1) 7 α – распадов и 3 β – распада
2) 9 α – распадов и 3 β – распада
3) 8α – распадов и 4 β – распада
4) 6 α – распадов и 6 β – распадов
:3
8. [Уд] (ВО1) Ядро тория превратилось в ядро радия . Ядро тория испустило при этом
1) электрон
2) протон
3) нейтрон
4) a – частицу
5) два протона
: 4
9. [Уд] (ВО1) Неизвестный радиоактивный химический элемент самопроизвольно распадается по схеме . Ядро этого элемента содержит
1) 92 протона и 142 нейтрона
2) 94 протона и 142 нейтрона
3) 92 протона и 144 нейтрона
4) 94 протона и 144 нейтрона
:3
10. [Уд] (ВО1) Среди приведенных уравнений реакции α – распада соответствует уравнение под номером
1)
2)
3)
4)
:2
Контроль: П – промежуточный
S511 Сингл ( Ядерные реакции ) 10 заданий
1. [Уд] (ВО1) Термоядерная реакция сопровождается
1) делением тяжелых ядер
2) слиянием легких ядер
3) выделением α – частиц
4) выделением нейтронов
:2
2. [Уд] (ВО1) Тепловой эффект ядерной реакции определяется законом сохранения
1) электрического заряда
2) барионного заряда
3) энергии
4) момента импульса
: 3
3. [Уд] (ВО1) Ниже записана ядерная реакция, а в скобках указаны массы (в атомных единицах массы) участвующих в ней частиц:
.
В этой реакции энергия
1) выделяется
2) поглощается
3) не поглощается и не выделяется
4) недостаточно данных для ответа
:1
4. [Уд] (ВО1) Модель ядра, основанная на аналогии между ядром и каплей жидкости, называется
1) оболочечной
2) капельной
3) классической
4) квантовой
:2
5. [Уд] (ВО1) В недрах Солнца температура достигает десятков миллионов градусов. Это объясняют
1) быстрым вращением Солнца вокруг своей оси
2) делением тяжелых ядер
3) термоядерным синтезом легких ядер
4) реакцией горения водорода в кислороде
:3
6. [Уд] (ВО1) Имеются два утверждения о реакции , идущей с выделением энергии:
1. сумма зарядов продуктов реакции точно равна сумме зарядов исходных ядер;
2. сумма масс продуктов реакции точно равна сумме масс исходных ядер.
Из них верными являются
1) только 1
2) только 2
3) и 1, и 2
4) ни 1, ни 2
:1
7. [Уд] (ВО1) В результате деления тяжелого атомного ядра происходит
1) разделение ядра на меньшее ядро и α – частицу
2) разделение ядра на два соразмерных по массе ядра и испускание нейтронов
3) разделение ядра на отдельные протоны и нейтроны
4) испускание ядром одного или нескольких нейтронов
:2
8. [Уд] (ВО1) В ходе реакции термоядерного синтеза образуется вторая частица
1) протон
2) электрон
3) нейтрон
4) нейтрино
:3
9. [Уд] (ВО1) Один из возможных вариантов деления ядра урана выглядит следующим образом:
.
Знаком вопроса заменена запись
1)
2) 2
3)
4)
:2
10. [Уд] (ВО1) Ядерной реакцией деления является
1) +
2)
3)
4)
:3
Вариация v514 Состав атомного ядра. Энергия связи
Контроль: П
С514 Кластер (Энергия связи. Ядерные силы) 7 заданий
1. [Уд] (ВО1) Ядерные силы притяжения
1) действуют только между протонами
2) действуют только между нейтронами
3) действуют между любыми нуклонами
4) между протонами и нейтронами не действуют
:3
2. [Уд] (ВО1) Два протона удерживаются в ядре атома гелия за счет … взаимодействия.
1) гравитационного
2) электромагнитного
3) сильного
4) слабого
:3
3. [Уд] (ВО1) Ядерные силы не являются
1) центральными
2) короткодействующими
3) насыщенными
4) обменными
:1
4. [Уд] (ВО1) Верное утверждение об энергии связи –
1) удельная энергия связи всех ядер одинакова
2) энергия связи у тяжелых ядер больше, чем у легких
3) наиболее устойчивые ядра находятся в средней части таблицы Менделеева
4) наибольшей удельной энергией связи обладают тяжелые ядра
:3
5. [Уд] (ВО1) Удельная энергия связи нуклонов в ядрах плутония , кюрия и америция равны соответственно 0,21; 0,22 и 0,23 МэВ/нуклон. Труднее выбить нейтрон
1) из ядра
2) из ядра
3) из ядра
4) все ядра одинаково устойчивы
:3
6. [Уд] (ВО1) Полная энергия двух ядер дейтерия при соединении их в ядро гелия
1) увеличивается
2) уменьшается
3) не изменяется
4) увеличивается или уменьшается в зависимости от начального расстояния между ядрами дейтерия
:2
7. [Уд] (ВО1) Из двух ядер и удельная энергия связи больше
1) у
2) у
3) у этих ядер удельная энергия связи одинакова
4) соотношение может быть любым
:2
Контроль: П
S514 Сингл (Состав атомного ядра ) - 7 заданий
1. [Уд] (ВО1) Ядро атома состоит из
1) нейтронов и электронов
2) протонов и нейтронов
3) протонов и электронов
4) нейтронов
:2
2. [Уд] (ВО1) Число нейтронов в ядре урана равно
1) 0
2) 92
3) 146
4) 238
:3
3. [Уд] (ВО1) В состав ядра олова входит
1) 132 протона, 182 нейтрона
2) 132 протона, 50нейтронов
3) 50 протонов, 132 нейтрона
4) 50 протонов, 82 нейтрона
:4
4. [Уд] (ВО1) Из перечисленных ниже ядер изотопами являются
1) и
2) и
3) и
4) и
:2
5. [Уд] (ВО1) В ядре химического элемента, имеющего порядковый номер в таблице Менделеева 26, число нейтронов больше числа протонов на 4. Массовое число А этого ядра равно
1) 26
2) 30
3) 56
4) 82
:3
6. [Уд] (ВО1) Зарядовое число скандия равно 21, а его массовое число равно 45. Это ядро содержит
1) 21 протон и 45 нейтронов
2) 24 протона и 21 нейтрон
3) 21 протон и 24 нейтрона
40 45 протонов и 21 нейтрон
:3
7. [Уд] (ВОМ) Верные утверждения об атомных ядрах:
1) радиус атомного ядра зависит от числа нуклонов
2) плотность ядерного вещества примерно одинакова для всех ядер
3) все атомные ядра имеют одинаковые размеры
4) плотность тяжелых ядер больше, чем плотность легких ядер
:1, 2
Дисциплина: Физика
Тема: 060 Механические колебания и волны
V061 – П Механические колебания
S061 – П Механические колебания (незатухающие, затухающие, вынужденные 30 заданий)
1. [Уд1] (ВО1) Полная механическая энергия пружинного маятника увеличилась в 2 раза. При этом амплитуда колебаний … раз(а).
1) увеличилась в 2
2) увеличилась в
3) уменьшилась в 2
4) уменьшилась в
:2
2. [Уд1] (ВО1) Материальная точка совершает гармонические колебания по закону . График, на котором изображена зависимость проекции ускорения этой точки от времени t –
1 ) 1
2) 2
3) 3
4) 4
:1
3. [Уд1] (ВО1) Материальная точка совершает колебания по закону . График, на котором изображена зависимость кинетической энергии материальной точки от времени –
1) 1
2) 2
3) 3
4) 4
:2
4. [Уд1] (ВО1) Материальная точка совершает колебания по закону . График, на котором изображена зависимость потенциальной энергии материальной точки от времени –
1) 1
2) 2
3) 3
4) 4
:4
5 . [Уд1] (ВО1) На рисунке представлены графики гармонических колебаний материальных точек одинаковой массы, А1=2А2. Соотношение амплитудных значений ускорений колеблющихся точек следующее
1) am1 = am2
2) a m1 < am2
3) a m1 > am2
4) Однозначного ответа нет
:2
6 . [Уд1] (ВО1) На рисунке представлены графики гармонических колебаний материальных точек одинаковой массы, А1=2А2. Соотношение амплитудных значений скоростей колеблющихся точек следующее
1) V m1 = Vm2
2) V m1 < Vm2
3) V m1 > Vm2
4) Однозначного ответа нет
:1
7. [Уд1] (ВО1) Даны уравнения гармонических колебаний четырёх пружинных маятников с одинаковыми коэффициентами упругости k. Маятник, имеющий наибольшую массу – … кг.
1)
2)
3)
4)
:4
8. [Уд1] (ВО1) Даны уравнения гармонических колебаний четырёх пружинных маятников с одинаковыми коэффициентами упругости k. Маятник, имеющий наименьшую массу – … кг.
1)
2)
3)
4)
:2
9. [Уд1] (ВО1) Даны уравнения гармонических колебаний четырёх пружинных маятников с одинаковыми массами. Маятник, имеющий наибольший коэффициент упругости k – … Н/м.
1)
2)
3)
4)
:2
10. [Уд1] (ВО1) Даны уравнения гармонических колебаний четырёх пружинных маятников с одинаковыми массами. Маятник, имеющий наименьший коэффициент упругости k – … Н/м.
1)
2)
3)
4)
:4
11. [Уд1] (ВО1) Даны уравнения гармонических колебаний материальной точки массы m . Коэффициент упругости k наибольший в случае
1) х = 3 sin (2πt + π) м
2) х = 3 cos (4πt + ) м
3) x = 5 cos (15πt – ) м
4) x = 5 sin (5πt) м
:3
1 2. [Уд1] (ВО1) На рис.1 изображена зависимость проекции скорости материальной точки, совершающей гармонические колебания, от времени. На рис.2 график зависимости от времени проекции ускорения этой точки изображен под номером
1) 1
2) 2
3) 3
4) 4
:2
1 3. [Уд1] (ВО1) На рис.1 изображена зависимость проекции скорости материальной точки, совершающей гармонические колебания, от времени. На рис.2 график зависимости от времени смещения от положения равновесия этой точки изображен под номером
1) 1
2) 2
3) 3
4) 4
:1
14. [Уд1] (ВО1) Материальная точка массой m = 0,1 кг колеблется так, что проекция ах ускорения зависит от времени в соответствии с уравнением ах = 10 sin , м/с2. Проекция силы на ось ОХ, действующей на материальную точку в момент времени t = c равна … Н.
1) 0,25
2) 0,5
3) 0,83
4) 1,0
: 2
15. [Уд1] (ВО1) Если в колебательной системе изменяющаяся физическая величина описывается законом , то частота затухающих колебаний связана с собственной частотой соотношением
1)
2)
3)
4)
:4
16. [Уд1] (ВО1) Уравнение затухающих колебаний материальной точки имеет вид , где = 6 рад/с, = 8 с-1. Логарифмический декремент затухания колебаний равен
1) 83,7
2) 8,37
3) 0,63
4) 62,8
:2
17. [Уд1] (ВО1) Уравнение затухающих колебаний материальной точки имеет вид , где = 6 рад/с, логарифмический декремент затухания = 8,37 . Коэффициент затухания колебаний равен … с-1.
1) 8,0
2) 1,3
3) 0,6
4) 3,0
:1
18. [Уд1] (ВО1) Уравнение затухающих колебаний материальной точки имеет вид ,м. Если логарифмический декремент затухания колебаний λ = 0,1, то период T затухающих колебаний равен … мс.
1) 20
2) 25
3) 40
4) 75
:2
19. [Уд1] (ВО1) Уравнение затухающих колебаний материальной точки имеет вид ,м. Если логарифмический декремент затухания колебаний λ = 0,02, то частота ω затухающих колебаний равна … рад/с.
1) 50
2) 100
3) 200
4) 300
:4
2 0. [Уд1] (ВО1) На рисунке изображен график затухающих колебаний, где х - колеблющаяся величина, описываемая уравнением х(t) = A0e-βt sin (ωt + φ). Коэффициент затухания β равен
1) 0,5
2) 1
3) 2
4) 2,7
:1
21. [Уд1] (ВО1) Приведены графики механических колебаний. Два графика соответствуют зависимости смещения х, два других – зависимости кинетической Wk и полной энергии W системы от времени. Обозначения вертикальных осей не указаны.
Зависимости кинетической энергии системы от времени в неконсервативной системе соответствует график
1) 1
2) 2
3) 3
4) 4
:2
22. [Уд1] (ВО1) Приведены графики механических колебаний. Два графика соответствуют зависимости смещения х, два других – зависимости кинетической Wk и полной энергии W системы от времени. Обозначения вертикальных осей не указаны.
Зависимости полной энергии W системы от времени в консервативной системе соответствует график
1) 1
2) 2
3) 3
4) 4
:1
23. [Уд1] (ВО1) Приведены графики механических колебаний. Два графика соответствуют зависимости смещения х, два других – зависимости кинетической Wk и полной энергии W системы от времени. Обозначения вертикальных осей не указаны.
Зависимости смещения х от времени в консервативной системе соответствует график
1) 1
2) 2
3) 3
4) 4
:4
24. [Уд1] (ВО1) Приведены графики механических колебаний. Два графика соответствуют зависимости смещения х, два других – зависимости кинетической Wk и полной энергии W системы от времени. Обозначения вертикальных осей не указаны.
Зависимости смещения х от времени в неконсервативной системе соответствует график
1) 1
2) 2
3) 3
4) 4
:3
25. [Уд1] (ВО1) Приведены графики зависимости кинетической Wк и полной механической W энергии от времени t при различных видах механических колебаний. Обозначения осей ординат не указаны.
Зависимость полной энергии W от времени описывается … графиками.
1) 1 и 2
2) 2 и 4
3) 3 и 1
4) 4 и 3
:3
26. [Уд1] (ВО1) Уравнение движения пружинного маятника является дифференциальным уравнением … колебаний.
1) свободных незатухающих
2) затухающих
3) вынужденных
4) апериодических
:2
27. [Уд1] (ВО1) Уравнение движения пружинного маятника является дифференциальным уравнением … колебаний.
1) свободных незатухающих
2) затухающих
3) вынужденных
4) апериодических
:1
28. [Уд1] (ВО1) Уравнение движения пружинного маятника является дифференциальным уравнением … колебаний.
1) свободных незатухающих
2) затухающих
3) вынужденных
4) апериодических
:3
29. [Уд1] (ВО1) Решение дифференциального уравнения движения пружинного маятника ищется в виде зависимости
1) х = Acos (ω0t +o)
2) х = Ao e-t cos (ωt +o)
3) x = 2A cos t cosωt
4) х = Ao e-2t cos (ω0t +o)
:2
3 0. [Уд1] (ВО1) На рисунке представлена зависимость амплитуды колебаний груза на пружине с жесткостью k = 10 Н/м от частоты внешней силы. Максимальная энергия в этой системе равна … Дж.
1) 0,002
2) 0,004
3) 20
4) 40
:1
C061 – П Механические колебания (сложение колебаний) – 16 заданий
1 . [Уд1] (ВОМ) На рисунке под номерами 1, 2 изображены траектории результирующего движения при сложении двух взаимно перпендикулярных гармонических колебаний, а под номерами 3, 4 – векторные диаграммы сложения гармонических колебаний одного направления и одинаковой частоты ( - векторы амплитуд складываемых колебаний, - вектор амплитуды результирующего колебания). Амплитуды складываемых колебаний равны для случаев, приведенных под номерами
:1,3,4
2. [Уд1] (ВО1) Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями x = 3cost и y = -6cost. Траекторией результирующего движения точки является
1) прямая линия
2) парабола
3) окружность
4) эллипс
:1
3. [Уд1] (ВО1) Складываются два гармонических колебания, происходящих в одном направлении.
1) , м и , м.
2) м и м.
3)
,
м и
,
м.
4) м и м.
Результирующее движение называется биением в (во) … случае.
1) 1
2) 2
3) 3
4) 4
:2
4. [Уд1] (ВО1) Складываются два гармонических колебания, происходящих в одном направлении: см и см. Амплитуда результирующего движения равна … см.
1) 7
2) 5
3) 3,5
4) 1
:2
5. [Уд1] (ВО1) Результат сложения двух гармонических колебаний одного направления с одинаковыми амплитудами и близкими частотами описывает уравнение
1) х = Acos (ω0t +o)
2) A2 = A12 +A22 + 2A1A2 cos
3) x = 2A cos t cosωt
4)
:3
6. [Уд1] (ВО1) Уравнение траектории при сложении двух гармонических колебаний взаимно перпендикулярных направлений с отличающимися амплитудами и одинаковыми частотами –
1) х = Acos (ω0t +o)
2) A2 = A12 +A22 + 2A1A2 cos
3) x = 2A cos t cosωt
4)
:4
7. [Уд1] (ВО1) Точка М одновременно совершает колебания по гармоническому закону вдоль осей координат ОХ и ОУ с одинаковыми амплитудами, разность фаз равна . При соотношении частот 1:1 траектория точки имеет вид, соответствующий схеме под номером
1) 1
2) 2
3) 3
4) 4
:3
8. [Уд1] (ВО1) Колебания точки М происходят вдоль осей Ох и Оу по закону синуса с различными амплитудами, но одинаковыми частотами. При разности фаз π траектория точки имеет вид, соответствующий схеме под номером
1) 1
2) 2
3) 3
4) 4
:2
9. [Уд1] (ВО1) Колебания точки М происходят вдоль осей Ох и Оу по закону синуса с одинаковыми амплитудами, и одинаковыми частотами. При разности фаз 0 траектория точки имеет вид, соответствующий схеме под номером
1) 1
2) 2
3) 3
4) 4
:4
10. [Уд1] (ВО1) Колебания точки М происходят вдоль осей Ох и Оу по закону синуса с одинаковыми амплитудами, но разными частотами. При разности фаз π/2 траектория точки имеет вид, соответствующий схеме под номером
1) 1
2) 2
3) 3
4) 4
:1
11. [Уд1] (ВО1) Точка М одновременно колеблется по гармоническому закону вдоль оcей координат ОХ и ОУ с одинаковыми амплитудами, разность фаз равна . При соотношении частот 3:2 траектория точки имеет вид на схеме, обозначенной номером
1) 1
2) 2
3) 3
4) 4
:4
1 2. [Уд1] (ВО1) При сложении двух взаимно-перпендикулярных колебаний одинаковой частоты траектория результирующего движения материальной точки представлена на рисунке. Тогда разность фаз складываемых колебаний равна
1) π
2) 0
3) 3π
4) π/2
:2
13. [Уд1] (ВО1) Два гармонических колебания происходят с одинаковыми периодами в одном направлении с амплитудами А1=4 см и А2=3 см. Амплитуда их результирующего колебания Ар=7 см. Разность фаз складываемых колебаний равна
1) ∆φ = 0
2) ∆φ =
3) ∆φ =
4) ∆φ = π
:1
14. [Уд1] (ВО1) Два гармонических колебания происходят с одинаковыми периодами в одном направлении с амплитудами А1 = 4 см и А2 = 3 см. Амплитуда их результирующего колебания Ар = 5 см. Разность фаз складываемых колебаний равна
1) ∆φ = 0
2) ∆φ =
3) ∆φ =
4) ∆φ = π
:3
15. [Уд1] (ВО1) Два гармонических колебания происходят с одинаковыми периодами в одном направлении с амплитудами А1 = 4 см и А2 = 3 см. Амплитуда их результирующего колебания Ар = 1 см. Разность фаз складываемых колебаний равна
1) ∆φ = 0
2) ∆φ =
3) ∆φ =
4) ∆φ = π
:4
16. [Уд1] (ВО1) Два гармонических колебания происходят с одинаковыми периодами в одном направлении с амплитудами А1 = 4 см и А2 = 3 см. Разность фаз складываемых колебаний равна ∆φ = . Амплитуда их результирующего колебания составляет … см.
1) 7
2) 5
3) 1
4) 12
:2
Дисциплина: Физика
Тема: 060 Механические колебания и волны
V064 – П Волновое движение
S064 – П Волновое движение - 10 заданий
1. [Уд1] (ВО1) Решением волнового уравнения является уравнение плоской монохроматической волны , которая распространяется вдоль направления оси Ох. Это уравнение представлено формулой
1)
2)
3)
4)
:4
2. [Уд1] (ВО1) Уравнение плоской синусоидальной волны, распространяющейся вдоль оси Ох со скоростью v = 500 м/с, имеет вид ξ = 0,01 sin (ωt – 2х). Циклическая частота ω равна … рад·с-1.
1) 1000
2) 159
3) 0,02
4) 0,001
:1
3. [Уд1] (ВО1) Уравнение плоской монохроматической волны , которая распространяется вдоль положительного направления оси Ох представлено формулой
1)
2)
3)
4)
:4
4. [Уд1] (ВО1) Уравнение сферической монохроматической волны представлено формулой
1)
2)
3)
4)
:3
5. [Уд1] (ВО1) Уравнение стоячей волны представлено формулой
1)
2)
3)
4)
:2
6. [Уд1] (ВО1) При интерференции двух волн результирующая волна характеризуется изменением
1) частоты волны
2) длины волны
3) распределения энергии в пространстве
4) периода колебаний
:3
7. [Уд1] (ВО1) Источник колебаний, находится в упругой среде, и точки этой среды находятся на расстоянии м от источника. Частота колебаний Гц, фазовая скорость волны м/с. Разность фаз равна … рад.
1) 2π
2) 0,5π
3) 0,25π
4) 0,33π
:2
8. [Уд1] (ВО1) Если разность фаз колебаний источника волн в упругой среде равна = 0,5π рад, и точки этой среды находятся на расстоянии м от источника. Частота колебаний составляет Гц, тогда фазовая скорость волны равна … м/с.
1) 20
2) 30
3) 40
4) 50
:3
9. [Уд1] (О) Точки пространства, в которых амплитуда колебаний стоячей волны, равна нулю, называются … стоячей волны.
Узлы, узлами
10. [Уд1] (ВО1) В стоячей волне расстояния между двумя соседними пучностями равно
1)
2) /2
3) 3/2
4) 2
:2
C064 – П Волновое движение (графики) – 4 задания
1 . [Уд1] (ВО1) В упругой среде в положительном направлении оси 0x распространяется плоская волна. На рисунке приведен график зависимости смещения ξ частицы среды от времени t в произвольной точке оси 0х. Циклическая частота волны … рад/c.
1) 2π
2) 0,8π
3) π/4
4) π/3
:3
2 . [Уд1] (ВО1) В упругой среде в положительном направлении оси 0x распространяется плоская волна. На рисунке приведен график зависимости смещения ξ частицы среды от времени t в произвольной точке оси 0х. Если длина волны равна 40 м, то скорость распространения составляет … м/c.
1) 2
2) 5
3) 8
4) 10
:2
3 . [Уд1] (ВО1) На рисунке приведена моментальная «фотография» модели плоской поперечной гармонической волны в момент времени t = 6 с. Источник колебаний находится в точке с координатой х = 0. В начальный момент времени (t = 0) все частицы среды находились в покое. Фазовая скорость волны равна … м/c.
1) 12
2) 6
3) 4
4) 2
:4
4 . [Уд1] (ВО1) На рисунке приведена моментальная «фотография» модели плоской поперечной гармонической волны в момент времени t = 6 с. Источник колебаний находится в точке с координатой х = 0. В начальный момент времени (t = 0) все частицы среды находились в покое. Циклическая частота волны равна … рад/c.
1) 2π
2) 0,8π
3) π/4
4) π/3
:4
Дисциплина: Физика
Тема: 240 Электромагнитная индукция
