
- •Базы данных: основные понятия и определения. Требования, предъявляемые к базам данных
- •Выбор хранимых данных
- •Реляционная модель данных
- •Реляционная алгебра
- •Операция выборка
- •Операция проекция
- •Операция естественное соединение
- •Операция соединение по условию (θ – соединение)
- •Операция деления
- •Методология проектирования баз данных. Основные задачи проектирования баз данных
- •Основные этапы проектирования баз данных
- •Концептуальное (инфологическое) проектирование бд
- •Логическое (даталогическое) проектирование бд
- •Принципы и средства структурного подхода к разработке по
- •Методология структурного анализа и проектирования sadt
- •Диаграммы потоков данных: внешние сущности, системы и подсистемы, процессы, хранилища данных, потоки данных. Нотация Гейна – Сарсона
- •Сравнительный анализ sadt-моделей и диаграмм потоков данных
- •Функциональные модели, используемые на стадии проектирования
- •14. Методология моделирования idef3: составные элементы, объекты ссылок, перекрестки.
- •15. Подходы к моделированию в базах данных
- •16. Анализ предметной области. Описание объектов и их свойств. Связи между элементами моделей данных. Описание сложных объектов
- •17. Проблема целостности базы данных
- •18. Даталогическое проектирование. Нотация Питера Чена. Нотация idef 1х
- •Нотация Питера Чена.
- •Нотация idef 1x
- •19. Проектирование реляционных баз данных на основе принципов нормализации. Правила технической нормализации
- •20. Алгоритм процесса нормализации схем отношений
- •21. Нормализация. Функциональная зависимость. Первая, вторая, нормальные формы
- •22. Нормализация. Функциональная зависимость. Третья нормальная форма
- •23. Нормализация. Функциональная зависимость. Нормальная форма Бойса – Кодда
- •24. Разработка реляционных баз данных на основе принципов нормализации
- •25. Основные аксиомы Армстронга. Замыкание
- •26. Нормальные формы высших порядков
- •27. Методологии проектирования
- •28. Инфологическое моделирование данных: модель «сущность-связь»
- •29. Принципы поддержки целостности в реляционной модели данных
- •30. Моделирование данных. Метод Баркера
- •31. Моделирование данных. Метод idef1x
- •32. Case-средство для концептуального моделирования данных на стадии формирования требований к ис – Silverrun
- •33. Нормализация. Функциональная зависимость. Первая, вторая, третья нормальные формы. Нормальная форма Бойса – Кодда
- •34. Инструментальные средства моделирования. Проектирование баз данных с использованием са erWin Data Modeler (erWin)
- •35. Алгоритм перехода от er – модели к реляционной схеме данных
- •36. Основные принципы объектно-ориентированного моделирования
- •37. Сущность методологии объектно-ориентированного анализа и проектирования
- •38. Язык объектного моделирования uml. Виды диаграмм uml. Последовательность построения диаграмм
- •Диаграмма состояний
- •Диаграмма последовательностей
- •Диаграмма активности
- •39. Модель прецедентов (вариантов использования, use-cases)
- •40. Моделирование статической структуры системы с помощью диаграммы классов: стереотипы классов
- •41. Моделирование статической структуры системы с помощью диаграммы классов: механизм пакетов
- •42. Моделирование статической структуры системы с помощью диаграммы классов: атрибуты
- •43. Моделирование статической структуры системы с помощью диаграммы классов: основные и вспомогательные операции
- •44. Моделирование статической структуры системы с помощью диаграммы классов: типы связей
- •45. Инкапсуляция, наследование, полиморфизм
- •46. Моделирование поведения системы
- •47. Использование диаграммы последовательностей для упорядочивания сообщений во времени
- •48. Использование диаграммы кооперации для описания структурной организации объектов
- •49. Моделирование физических аспектов функционирования системы с помощью диаграмм развертывания
- •50. Особенности построения физической модели базы данных
- •51. Ограничения ссылочной целостности
- •52. Моделирование процессов обработки данных
- •53. Индексирование
- •54. Методы совместного доступа к базам данных
- •55. Транзакции и блокировки
- •56. Типы параллелизма
- •57. Свойства транзакций. Способы завершения транзакций
- •58. Проблемы параллельного выполнения транзакций
- •59. Методы сериализации транзакций. Механизм блокировок. Типы конфликтов
- •60. Правила совместимости захватов. Проблема тупиковых ситуаций и ее решение
- •61. Уровни изолированности пользователей
- •62. Гранулированные синхронизационные захваты
- •63. Метод временных меток
- •64. Предикатные синхронизационные захваты
Сравнительный анализ sadt-моделей и диаграмм потоков данных
Сравнительный анализ этих двух разновидностей методов структурного анализа проводится по следующим параметрам: 1) Адекватность средств решаемым задачам; 2) Согласованность с другими средствами структурного анализа; 3) Интеграция с последующими стадиями Жизненными Циклами ПО (прежде всего со стадией проектирования).
Адекватность средств решаемым задачам. Модели SADT используются для моделирования организационных систем. С другой стороны, не существует никаких принципиальных ограничений на использование DFD в качестве средства построения статистических моделей деятельности организации. Метод SADT успешно работает только при описании стандартизированных бизнес-процессов в зарубежных корпорациях, поэтому он и принят в США в качестве типового. Если же речь идет не о системах вообще, а о Экономических Информационных Системах, то здесь DFD вне конкуренции. SADT - диаграммы оказываются значительно менее выразительными и удобными при моделировании Экономических Информационных Систем.
Согласованность с другими средствами структурного анализа. Главным достоинством любых моделей является возможность их интеграции с моделями других типов. В данном случае речь идет о согласованности функциональных моделей со средствами моделирования данных. Согласование SADT - модели с ERD практически невозможно или носит искусственный характер. В свою очередь, DFD и ERD взаимно дополняют друг друга и являются согласованными, поскольку в DFD присутствует описание структур данных, непосредственно используемое для построения ERD.
Интеграция с последующими стадиями ЖЦ ПО. Важная характеристика модели - ее совместимость с моделями последующих стадий ЖЦ ПО (прежде всего стадии проектирования, непосредственно следующей за стадией формирования требований и опирающейся на ее результаты). DFD могут быть легко преобразованы в модели проектируемой системы.
Функциональные модели, используемые на стадии проектирования
На стадии проектирования могут использоваться различные функциональные модели, включая:
1. Модель потоков данных (DFD) - показывает поток данных между различными компонентами системы и определяет, как данные обрабатываются и передаются.
2. Модель прецедентов (Use Case) - описывает функциональность системы через ее взаимодействие с пользователями и другими системами.
3. Модель классов (Class) - определяет объекты и их атрибуты, методы и связи между ними.
4. Модель последовательности (Sequence) - показывает последовательность действий, которые происходят в системе при выполнении определенной функции.
5. Модель состояний (State) - определяет возможные состояния системы и переходы между ними.
6. Модель компонентов (Component) - определяет компоненты системы и их взаимодействие для достижения определенной функциональности.
7. Модель развертывания (Deployment) - определяет физическое расположение компонентов системы и их взаимодействие в рамках сетевой инфраструктуры.