
- •Базы данных: основные понятия и определения. Требования, предъявляемые к базам данных
- •Выбор хранимых данных
- •Реляционная модель данных
- •Реляционная алгебра
- •Операция выборка
- •Операция проекция
- •Операция естественное соединение
- •Операция соединение по условию (θ – соединение)
- •Операция деления
- •Методология проектирования баз данных. Основные задачи проектирования баз данных
- •Основные этапы проектирования баз данных
- •Концептуальное (инфологическое) проектирование бд
- •Логическое (даталогическое) проектирование бд
- •Принципы и средства структурного подхода к разработке по
- •Методология структурного анализа и проектирования sadt
- •Диаграммы потоков данных: внешние сущности, системы и подсистемы, процессы, хранилища данных, потоки данных. Нотация Гейна – Сарсона
- •Сравнительный анализ sadt-моделей и диаграмм потоков данных
- •Функциональные модели, используемые на стадии проектирования
- •14. Методология моделирования idef3: составные элементы, объекты ссылок, перекрестки.
- •15. Подходы к моделированию в базах данных
- •16. Анализ предметной области. Описание объектов и их свойств. Связи между элементами моделей данных. Описание сложных объектов
- •17. Проблема целостности базы данных
- •18. Даталогическое проектирование. Нотация Питера Чена. Нотация idef 1х
- •Нотация Питера Чена.
- •Нотация idef 1x
- •19. Проектирование реляционных баз данных на основе принципов нормализации. Правила технической нормализации
- •20. Алгоритм процесса нормализации схем отношений
- •21. Нормализация. Функциональная зависимость. Первая, вторая, нормальные формы
- •22. Нормализация. Функциональная зависимость. Третья нормальная форма
- •23. Нормализация. Функциональная зависимость. Нормальная форма Бойса – Кодда
- •24. Разработка реляционных баз данных на основе принципов нормализации
- •25. Основные аксиомы Армстронга. Замыкание
- •26. Нормальные формы высших порядков
- •27. Методологии проектирования
- •28. Инфологическое моделирование данных: модель «сущность-связь»
- •29. Принципы поддержки целостности в реляционной модели данных
- •30. Моделирование данных. Метод Баркера
- •31. Моделирование данных. Метод idef1x
- •32. Case-средство для концептуального моделирования данных на стадии формирования требований к ис – Silverrun
- •33. Нормализация. Функциональная зависимость. Первая, вторая, третья нормальные формы. Нормальная форма Бойса – Кодда
- •34. Инструментальные средства моделирования. Проектирование баз данных с использованием са erWin Data Modeler (erWin)
- •35. Алгоритм перехода от er – модели к реляционной схеме данных
- •36. Основные принципы объектно-ориентированного моделирования
- •37. Сущность методологии объектно-ориентированного анализа и проектирования
- •38. Язык объектного моделирования uml. Виды диаграмм uml. Последовательность построения диаграмм
- •Диаграмма состояний
- •Диаграмма последовательностей
- •Диаграмма активности
- •39. Модель прецедентов (вариантов использования, use-cases)
- •40. Моделирование статической структуры системы с помощью диаграммы классов: стереотипы классов
- •41. Моделирование статической структуры системы с помощью диаграммы классов: механизм пакетов
- •42. Моделирование статической структуры системы с помощью диаграммы классов: атрибуты
- •43. Моделирование статической структуры системы с помощью диаграммы классов: основные и вспомогательные операции
- •44. Моделирование статической структуры системы с помощью диаграммы классов: типы связей
- •45. Инкапсуляция, наследование, полиморфизм
- •46. Моделирование поведения системы
- •47. Использование диаграммы последовательностей для упорядочивания сообщений во времени
- •48. Использование диаграммы кооперации для описания структурной организации объектов
- •49. Моделирование физических аспектов функционирования системы с помощью диаграмм развертывания
- •50. Особенности построения физической модели базы данных
- •51. Ограничения ссылочной целостности
- •52. Моделирование процессов обработки данных
- •53. Индексирование
- •54. Методы совместного доступа к базам данных
- •55. Транзакции и блокировки
- •56. Типы параллелизма
- •57. Свойства транзакций. Способы завершения транзакций
- •58. Проблемы параллельного выполнения транзакций
- •59. Методы сериализации транзакций. Механизм блокировок. Типы конфликтов
- •60. Правила совместимости захватов. Проблема тупиковых ситуаций и ее решение
- •61. Уровни изолированности пользователей
- •62. Гранулированные синхронизационные захваты
- •63. Метод временных меток
- •64. Предикатные синхронизационные захваты
45. Инкапсуляция, наследование, полиморфизм
Инкапсуляция — это процесс отделения друг от друга элементов объекта, определяющих его устройство и поведение; инкапсуляция служит для того, чтобы изолировать контрактные обязательства абстракции от их реализации. Это механизм, который объединяет данные и код, манипулирующий этими данными, а также защищает и то, и другое от внешнего вмешательства или неправильного использования.
Наследование — это процесс, посредством которого один объект может приобретать свойства другого. Точнее, объект может наследовать основные свойства другого объекта и добавлять к ним черты, характерные только для него. Наследование является важным, поскольку оно позволяет поддерживать концепцию иерархии классов. Применение иерархии классов делает управляемыми большие потоки информации.
Полиморфизм — это свойство, которое позволяет использовать одно и то же имя для решения нескольких схожих, но технически разных задач. В более общем смысле, концепцией полиморфизма является идея «один интерфейс, множество методов». Полиморфизм помогает снизить сложность программ, разрешая использование того же интерфейса для задания единого класса действий в иерархии классов. Выбор же конкретного действия, в зависимости от ситуации, возлагается на компилятор.
46. Моделирование поведения системы
Поведенческие модели
Эти модели используются для описания общего поведения системы. Обычно рассматривают два типа поведенческих моделей — модель потоков данных и модель конечного автомата. Эти модели можно использовать отдельно или совместно, в зависимости от типа разрабатываемой системы.
Модели потока данных — это интуитивно понятный способ показа последовательности обработки данных внутри системы. Нотации, используемые в этих моделях, описывают обработку данных с помощью системных функций, а также хранение и перемещения данных между системными функциями.
В диаграммах потоков данных используются следующие обозначения: закругленные прямоугольники соответствуют этапам обработки данных; стрелки, снабженные примечаниями с названием данных, представляют потоки данных; прямоугольники соответствуют хранилищам или источникам данных.
Модели потоков данных показывают функциональную структуру системы, где каждое преобразование данных соответствует одной системной функции. Иногда модели потоков данных используют для описания потоков данных в рабочем окружении системы. Такая модель показывает, как различные системы и подсистемы обмениваются информацией. Подсистемы окружения не обязаны быть простыми функциями.
Модели конечных автоматов используются для моделирования поведения системы, реагирующей на внутренние или внешние события. Такая модель показывает состояние системы и события, которые служат причиной перехода системы из одного состояния в другое.
Модели конечных автоматов являются неотъемлемой частью методов проектирования систем реального времени. Такие модели определяются диаграммами состояний, которые стали основой системы нотаций в языке моделирования UML.