
- •1 Вопрос:
- •2 Вопрос:
- •3 Вопрос:
- •4 Вопрос:
- •5 Вопрос:
- •6 Вопрос:
- •7 Вопрос:
- •8 Вопрос:
- •9 Вопрос:
- •10 Вопрос:
- •11 Вопрос:
- •12 Вопрос:
- •13 Вопрос:
- •14 Вопрос:
- •15 Вопрос:
- •16 Вопрос:
- •17 Вопрос:
- •18. Связь между силой потенциального поля и потенциальной энергией.
- •19. Полная механическая энергия частицы в силовом поле. Законы ее изменения и сохранения.
- •20. Механическая энергия системы частиц. Законы изменения и сохранения механической энергии системы.
- •21. Момент импульса частицы и момент силы относительно некоторой точки. Уравнение моментов.
- •22. Момент импульса системы. Законы изменения и сохранения момента импульса системы.
- •23. Число степеней свободы твердого тела. Уравнения движения твердого тела.
- •24. Момент импульса тела относительно точки. Момент инерции тела относительно оси. Теорема Штейнера.
- •25. Уравнение динамики твердого тела, вращающегося вокруг неподвижной оси.
- •26. Кинетическая энергия вращающегося твердого тела. Работа внешних сил при вращении твердого тела.
- •27. Гироскоп. Гироскопический эффект. Прецессия гироскопа.
- •28. Уравнения динамики твердого тела, совершающего плоское движение. Кинетическая энергия твердого тела при плоском движении.
- •29. Уравнение свободных колебаний под действием квазиупругой силы и его общее решение
- •30. Гармонический осциллятор. Энергия гармонического осциллятора.
- •31. Сложение гармонических колебаний
- •32. Физический и математический маятник(малые колебания без затухания)
- •33. Затухающие колебания. Уравнение затухающих колебаний и его решение.
- •34. Вынужденные колебания и его решение.
- •35. Явление резонанса, определение его характеристик
- •36. Основные характеристики напряжений в упругих средах. Распространение волн в упругой среде. Продольные и поперечные волны. Фронт волны и волновая поверхность
- •37. Фазовая скорость волны. Длина волны
- •38. Плоские, сферические и цилиндрические волны. Уравнение плоской и сферической волн.
- •43. Уравнение состояние системы. Идеальный газ. Уравнение состояния идеального газа.
- •44. Внутренняя энергия идеального газа. Теплообмен и количество теплоты. Работа сил давления газа. Первое начало термодинамики.
- •45. Теплоемкость как функция термодинамического процесса. Уравнение Майера
- •46. Адиабатический процесс. Уравнение Пуассона
- •47. Термодинамический цикл. Кпд цикла
- •52. Распределение молекул идеального газа по координатам во внешнем поле (распределение Больцмана).
- •53. Распределение Максвелла-Больцмана
- •54. Закон равнораспределения энергии по степеням свободы. Статистический смысл температуры.
- •55. Статистический смысл макросостояния. Статистический смысл энтропии. Энтропия системы.
- •56. Второй закон термодинамики. Неравенство Клаузиуса. Закон возрастания энтропии. Энтропия и необратимость.
- •57. Электрический заряд и его свойства. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции сил.
- •58. Электростатическое поле. Напряженность е электростатического поля. Напряженность электростатического поля е точечного заряда и системы зарядов.
- •59. Поток векторного поля е через поверхность. Теорема Гаусса для поля вектора е электростатического поля.
- •60. Теорема о циркуляции вектора напряженности электростатического поля.
- •61. Потенциал электростатического поля. Потенциал поля точечного заряда и системы зарядов.
- •№62 Связь между потенциалом и напряженностью
- •№63 Электрическое поле диполя в дальней зоне
- •№64 Момент сил, действующих на диполь в электрическом поле.
- •№65 Плотность и сила тока. Основные теории Друде для классической электропроводности металлов.
- •67. Вектор магнитной индукции. Магнитное поле равномерно движущегося заряда
- •68.Стационарное магнитное поле. Закон Био-Савара-Лапласа
- •69. Магнитный поток
- •70. Теорема о циркуляции вектора магнитной индукции
- •71. Контур с током в магнитном поле, момент сил. Сила, действующая на контур в неоднородном магнитном осесимметричном поле. Работа сил магнитного поля при перемещении проводника с током.
- •72. Проводники в электростатическом поле. Поле внутри проводника и у его поверхности. Распределение заряда проводнике.
- •73. Электроемкость уединенного проводника. Емкость системы проводников. Энергия электрического поля.
- •74. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Поле внутри диэлектрика. Связанные и сторонние заряды. Диэлектрическая восприимчивость.
- •75. Теорема Гаусса для вектора поляризованности.
- •76. Вектор электрического смещения. Диэлектрическая проницаемось. Теорема гауса для вектора электрического смещения.
- •77. Условия на границе двух диэлектриков.
- •78 Сегнетоэлектрики.
- •79 Магнитный момент атомов.
- •80 Намагниченность. Ток намагничивания.
- •81 Теорема о циркуляции вектора намагниченности.
- •82 Теорема о циркуляции вектора напряженности.
- •83 Диамагнетики. Ферромагнетизм.
18. Связь между силой потенциального поля и потенциальной энергией.
Каждой
точке потенциального поля соответствует,
с одной стороны, некоторое значение
вектора силы
,
действующей на тело, и, с другой стороны,
некоторое значение потенциальной
энергии
.
Следовательно, между силой и потенциальной
энергией должна существовать определенная
связь.
Для
установления этой связи вычислим
элементарную работу
,
совершаемую силами поля при малом
перемещении
тела,
происходящем вдоль произвольно
выбранного направления в пространстве,
которое обозначим буквой
.
Эта работа равна
где
-
проекция силы
на
направление
.
Поскольку
в данном случае работа совершается за
счет запаса потенциальной энергии
,
она равна убыли потенциальной энергии
на
отрезке оси
:
Из двух последних выражений получаем
Откуда
Последнее выражение дает среднее значение на отрезке . Чтобы
получить значение в точке нужно произвести предельный переход:
Так как может изменяться не только при перемещении вдоль оси , но также и при перемещениях вдоль других направлений, предел в этой формул представляет робой так называемую частную производную от по :
Это соотношение справедливо для любого направления в пространстве, в частности и для направлений декартовых координатных осей х, у, z:
Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:
в
математике вектор
,
где
а - скалярная функция х, у, z, называется
градиентом этого скаляра обозначается
символом
. Следовательно
сила равна градиенту потенциальной
энергии, взятого с обратным знаком
|
19. Полная механическая энергия частицы в силовом поле. Законы ее изменения и сохранения.
Полная механическая энергия частицы – энергия механического движения и взаимодействия, равная сумме кинетической и потенциальной энергий: E = Ek + Ep. Внешние силы не имеют отношения к силовому полю, в котором находятся частицы, они могут быть и консервативными, и неконсервативными. Работа последних сил не может быть учтена как изменение потенциальной энергии системы.
Закон сохранения механической энергии частицы:
полная механическая энергия частицы в стационарном поле консервативных сил остается неизменной во времени, если внешние силы отсутствуют или таковы, что не совершают работы в течение рассматриваемого времени: E = Ek + Ep = const .
20. Механическая энергия системы частиц. Законы изменения и сохранения механической энергии системы.
Механическая энергия системы определяется как E = Ek + Ep соб . Изменение механической энергии замкнутой системы равно алгебраической сумме работ всех внутренних неконсервативных сил
E2 - E1 = неконмервAвнутр.
Закон сохранения механической энергии системы:
механическая энергия замкнутой системы частиц, в которой отсутствуют неконсервативные силы, сохраняется в процессе движения.
Полная механическая энергия системы во внешнем поле равна сумме кинетической и потенциальной энергий E = Ek + собEp + внешEp.
+Закон сохранения полной механической энергии системы, находящейся во внешнем стационарном поле консервативных сил: в инерциальной системе отсчета полная механическая энергия замкнутой системы частиц, в которой нет внутренних неконсервативных сил, остается постоянной в процессе движения.