
- •Получение стали
- •Сравнение основных свойств железа, меди, алюминия, титана.
- •Атомно-кристаллическое строение металлов. Кристаллизация металлов. Типы кристаллических решеток, Полиморфизм. Анизотропия. Аморфное состояние.
- •Анизотропия свойств металлов.
- •Аморфное состояние металлов
- •Дефекты кристаллических решеток. Влияние плотности дислокаций на прочность . Влияние пластической деформации на структуру и свойства металлов. Дефекты кристаллического строения
- •Влияние пластической деформации на структуру и механические свойства металлов и сплавов
- •Превращения в наклепанном металле при нагреве. Изменения его структуры и свойств
- •Виды изломов. Методы исследования структуры материалов. Строение металлического слитка . Дефекты структуры.
- •Методы исследования структуры материалов
- •Металлографические методы Макроскопический анализ
- •Микроскопический анализ
- •Строение слитка.
- •Классификация дефектов
- •Методы исследования структуры металлов: макроскопический анализ. Макроскопический анализ
- •Методы исследования структуры металлов: микроскопический анализ. Микроскопический анализ
- •Методы исследования структуры и дефектов металлов: рентгеноструктурный анализ, пэм, сэм, узи и магнитопорошковый метод.
- •Методы определения твердости материалов. Понятие «твердость материала», «индентор».
- •Определение твердости материалов по методу Бринеля .Обозначение твердости по Бринелю на машиностроительных чертежах.
- •Определение твердости материалов по методу Роквелла .Обозначение твердости по Роквеллу на машиностроительных чертежах.
- •Определение твердости материалов по методу Викерса .Обозначение твердости по Викерсу на машиностроительных чертежах.
- •Порог хладноломкости
- •Понятие металлического сплава. Понятие «компонент», «фаза», «структура». Типы структур сплавов.
- •Строение металлического сплава: твердые растворы, механические смеси и химические соединения.
- •Диаграмма состояния эвтектического типа. Диаграммы состояния сплавов с ограниченной растворимостью. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии, с эвтектикой
- •4.5. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии, с перитектикой
- •Диаграммы эвтектического типа
- •Диаграмма состояния системы, в которой компоненты образуют непрерывный ряд твердых растворов.
- •Связь между свойствами сплавов и типом диаграммы состояния
- •Диаграмма состояния железо-углерода.
- •Фаза и структуры в системе железо-углерод, их краткие характеристики
- •2. Фазы и структуры в железоуглеродистых сплавах.
- •Стали обыкновенного качества. Маркировка. Автоматные стали.
- •Конструкционные
- •Инструментальные;
- •С особыми физико-химическими характеристиками.
- •Углеродистые инструментальные стали . Характеристика и маркировка. Углеродистые инструментальные стали Основные характеристики:
- •Применение
- •Маркировка
- •Углеродистые качественные конструкционные стали. Классификация качественных углеродистых сталей
- •Общая характеристика качественных углеродистых сталей
- •Применение качественной конструкционной углеродистой стали
- •Особенности маркировки
- •Чугун. Влияние формы углерода на свойства чугуна. Структуры чугунов. Маркировка чугунов.
- •Белый чугун, его состав, структура, свойства, область применения.
- •Марки чугунов. Специальные чугуны (антифрикционный, жаростойкий и жаропрочный чугун). Специальные чугуны
- •Антифрикционные чугуны
- •Классификация легированных сталей.
- •Инструментальные легированные стали. Штампованные стали. Быстрорежущие стали.
- •Штампованные стали
- •Быстрорежущие стали
- •Быстрорежущие стали. Свойства и маркировка.
- •Расшифровка обозначения марок сталей
- •Легированные стали с особыми свойствами. Коррозионностойкие, жаростойкие , жаропрочные, износостойкие. Влияние легирующих элементов на свойства. Примеры марок.
- •Хладостойкие стали и сплавы
- •Твердые инструментальные сплавы. Классификация, маркировка. Сравнение с инструментальными сталями . Твердые сплавы и их маркировка
- •Краткое сравнение твердых сплавов с другими инструментальными материалами
- •Упрочняющая и разупрочняющая термическая обработка металлов. Критические точки . Превращение аустенита при охлаждении.
- •Отжиг и нормализация, как виды термической обработки стали.
- •Объемная закалка стали. Охлаждающие среды. Закаливаемость и прокаливаемость сталей. Поверхностная закалка.
- •Способы объемной закалки
- •Этапы закалки стали
- •Способы охлаждения при закаливании стали
- •Поверхностная закалка
- •Внутренние напряжения в закаленной стали. Отпуск стали. Закалка сталей. Внутренние напряжения при закалке.
- •Закалочные среды. Способы закалки.
- •Отпуск стали.
- •Виды хто стали. Диффузионное насыщение поверхности металлами и неметаллами.
- •Цементация стали.
- •Азотирование стали.
- •Нитроцементация и цианирование стали.
- •Медь и ее сплавы. Свойства. Маркировка.
- •Алюминий и его сплавы. Свойства. Маркировка.
- •Неметаллические машиностроительные материалы. Композиционные материалы.
- •1. Классификация композиционных материалов
- •2. Состав, строение и свойства композиционных материалов
Штампованные стали
Для обработки металлов давлением применяют инструменты штампы, пуансоны, ролики, валики и т. д., деформирующие металл.
Штамповые стали делятся на две группы: деформирующие металл в холодном состоянии и деформирующие металл в горячем состоянии.
Для штамповки в холодном состоянии сталь, из которой изготавливают штампы, обладать высокой твердостью, обеспечивающей устойчивость стали против истирания, хотя и вязкость, особенно для пуансонов, имеет также первостепенное значение.
Сталь для "горячих штампов" должна иметь как можно меньшую чувствительность к местным нагревам. В недостаточно вязкой (пластичной) стали, например в плохо отпущенной, местный нагрев может привести к образованию трещин.
Для более сложных конфигураций штампов и более тяжелых условий работы применяют легированные закаливаемые в масле (глубоко прокаливающиеся) стали- чаще всего сталь Х (ШХ15).
При относительно легких условиях работы (легкие удары, малая деформация металла, например ручные клейма, ручные зубила) применяют углеродистую сталь У7, У8. У9. Необходимая твердость (HRC 58) получается путем закалки и отпуска при 250-350°С. Переходим теперь к рассмотрению сталей, применяемых для изготовления горячих штампов, деформирующих металл в горячем состоянии. Металл, применяемый для горячих штампов, должен иметь определенный комплекс свойств:
ЖАРОПРОЧНОСТЬ. Металл горячих штампов должен обладать высоким пределом текучести и высоким сопротивлением износу при высоких температурах, чтобы замедлить процессы истирания и деформирования элементов фигуры штампа, разогревающихся от соприкосновения с горячим металлом.
КРАСНОСТОЙКОСТЬ. Высокие жаропрочные свойства не должны снижаться под длительным воздействием температуры, металл горячих штампов должен устойчиво сопротивляться отпуску.
ТЕРМОСТОЙКОСТЬ. Циклический нагрев и охлаждение поверхности штампа во время работы и, следовательно, чередующееся расширение и сжатие поверхностных слоев приводят к появлению так называемых разгарных трещин. Материал штампа должен обладать высокой разгаростойкостью или, как чаще называют, термостойкостью или высоким сопротивлением термической усталости.
ВЯЗКОСТЬ. Деформирование металла при штамповке сопровождается ударными воздействиями этого металла на штампы, поэтому металл штампов должен обладать известной вязкостью- особенно при штамповке на молотах, когда приходится достигать нужного повышения вязкости даже за счет некоторого снижения жаропрочности.
ПРОКАЛИВАЕМОСТЬ. Многие штампы имеют весьма большие размеры (например, кубики ковочных штампов имеют размеры 500х500х1000 мм и т. п.). Для получения хороших свойств по всему сечению, в частности достаточной вязкости, сталь штампов должна глубоко прокаливаться.
ОТПУСКНАЯ ХРУПКОСТЬ. Сталь должна быть минимальна чувствительной к этому пороку.
СЛИПАЕМОСТЬ. При значительном давлении горячий металл может как бы прилипать к металлу штампа (явление адгезии), и когда штампуемое изделие отдирается от штампа, то оно всякий раз частично разрушает его поверхность. Это явление разрушения будет тем сильнее выражено, чем сильнее адгезионное взаимодействие штампуемого металла и металла штампа. Поэтому подобное взаимодействие штамповой стали с металлом изделия должно быть минимальным.