
- •Получение стали
- •Сравнение основных свойств железа, меди, алюминия, титана.
- •Атомно-кристаллическое строение металлов. Кристаллизация металлов. Типы кристаллических решеток, Полиморфизм. Анизотропия. Аморфное состояние.
- •Анизотропия свойств металлов.
- •Аморфное состояние металлов
- •Дефекты кристаллических решеток. Влияние плотности дислокаций на прочность . Влияние пластической деформации на структуру и свойства металлов. Дефекты кристаллического строения
- •Влияние пластической деформации на структуру и механические свойства металлов и сплавов
- •Превращения в наклепанном металле при нагреве. Изменения его структуры и свойств
- •Виды изломов. Методы исследования структуры материалов. Строение металлического слитка . Дефекты структуры.
- •Методы исследования структуры материалов
- •Металлографические методы Макроскопический анализ
- •Микроскопический анализ
- •Строение слитка.
- •Классификация дефектов
- •Методы исследования структуры металлов: макроскопический анализ. Макроскопический анализ
- •Методы исследования структуры металлов: микроскопический анализ. Микроскопический анализ
- •Методы исследования структуры и дефектов металлов: рентгеноструктурный анализ, пэм, сэм, узи и магнитопорошковый метод.
- •Методы определения твердости материалов. Понятие «твердость материала», «индентор».
- •Определение твердости материалов по методу Бринеля .Обозначение твердости по Бринелю на машиностроительных чертежах.
- •Определение твердости материалов по методу Роквелла .Обозначение твердости по Роквеллу на машиностроительных чертежах.
- •Определение твердости материалов по методу Викерса .Обозначение твердости по Викерсу на машиностроительных чертежах.
- •Порог хладноломкости
- •Понятие металлического сплава. Понятие «компонент», «фаза», «структура». Типы структур сплавов.
- •Строение металлического сплава: твердые растворы, механические смеси и химические соединения.
- •Диаграмма состояния эвтектического типа. Диаграммы состояния сплавов с ограниченной растворимостью. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии, с эвтектикой
- •4.5. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии, с перитектикой
- •Диаграммы эвтектического типа
- •Диаграмма состояния системы, в которой компоненты образуют непрерывный ряд твердых растворов.
- •Связь между свойствами сплавов и типом диаграммы состояния
- •Диаграмма состояния железо-углерода.
- •Фаза и структуры в системе железо-углерод, их краткие характеристики
- •2. Фазы и структуры в железоуглеродистых сплавах.
- •Стали обыкновенного качества. Маркировка. Автоматные стали.
- •Конструкционные
- •Инструментальные;
- •С особыми физико-химическими характеристиками.
- •Углеродистые инструментальные стали . Характеристика и маркировка. Углеродистые инструментальные стали Основные характеристики:
- •Применение
- •Маркировка
- •Углеродистые качественные конструкционные стали. Классификация качественных углеродистых сталей
- •Общая характеристика качественных углеродистых сталей
- •Применение качественной конструкционной углеродистой стали
- •Особенности маркировки
- •Чугун. Влияние формы углерода на свойства чугуна. Структуры чугунов. Маркировка чугунов.
- •Белый чугун, его состав, структура, свойства, область применения.
- •Марки чугунов. Специальные чугуны (антифрикционный, жаростойкий и жаропрочный чугун). Специальные чугуны
- •Антифрикционные чугуны
- •Классификация легированных сталей.
- •Инструментальные легированные стали. Штампованные стали. Быстрорежущие стали.
- •Штампованные стали
- •Быстрорежущие стали
- •Быстрорежущие стали. Свойства и маркировка.
- •Расшифровка обозначения марок сталей
- •Легированные стали с особыми свойствами. Коррозионностойкие, жаростойкие , жаропрочные, износостойкие. Влияние легирующих элементов на свойства. Примеры марок.
- •Хладостойкие стали и сплавы
- •Твердые инструментальные сплавы. Классификация, маркировка. Сравнение с инструментальными сталями . Твердые сплавы и их маркировка
- •Краткое сравнение твердых сплавов с другими инструментальными материалами
- •Упрочняющая и разупрочняющая термическая обработка металлов. Критические точки . Превращение аустенита при охлаждении.
- •Отжиг и нормализация, как виды термической обработки стали.
- •Объемная закалка стали. Охлаждающие среды. Закаливаемость и прокаливаемость сталей. Поверхностная закалка.
- •Способы объемной закалки
- •Этапы закалки стали
- •Способы охлаждения при закаливании стали
- •Поверхностная закалка
- •Внутренние напряжения в закаленной стали. Отпуск стали. Закалка сталей. Внутренние напряжения при закалке.
- •Закалочные среды. Способы закалки.
- •Отпуск стали.
- •Виды хто стали. Диффузионное насыщение поверхности металлами и неметаллами.
- •Цементация стали.
- •Азотирование стали.
- •Нитроцементация и цианирование стали.
- •Медь и ее сплавы. Свойства. Маркировка.
- •Алюминий и его сплавы. Свойства. Маркировка.
- •Неметаллические машиностроительные материалы. Композиционные материалы.
- •1. Классификация композиционных материалов
- •2. Состав, строение и свойства композиционных материалов
Фаза и структуры в системе железо-углерод, их краткие характеристики
Железо и его сплавы.
Железоуглеродистые сплавы являются важнейшими металлическими сплавами, применяемыми в современной технике. Основным компонентом является железо. Чистое железо – металл серебристо-белого цвета с молекулярной массой 55,8 и чистотой 99,999%. Техническое железо содержит 99,8-99,9% Fe. Тпл. 15390С. Известны 2 полиморфные модификации Fe: и . -Fe существует при температуре ниже 9100С и выше 13920С. В интервале 1392-15390С -Fe обозначают δ-Fe.
Для -Fe характерна ОЦК решетка. До температуры 7680С железо магнитно. Критичес-кую точку (768), соответствующую магнитному превращению называют т. Кюри и обозначают т. А2. В этой точке происходит переход из ферромагнитного состояния в парамагнитное.
Магнитные свойства железа сильно зависят от его чистоты и режимов термической об-работки. С увеличением степени чистоты магнитная проницаемость увеличивается.
При температуре 910-13920С существует -Fe, оно парамагнитно. Критическую точку превращения -Fe↔- Fe при 9100С обозначают АС3 (при нагреве) и Ar3 (при охлаждении). Критическую точку перехода ↔γ-Fe при 13920С обозначают Ас4 (при нагреве) и Аr4 (при охлаждении).
Кристаллическая решетка γ-Fe – гранецентрированный куб (ГЦК). Плотность γ-Fe выше, чем -Fe.
Углерод – неметаллический элемент П периода ΙV группы таблицы Менделеева с мо-лекулярной массой 12,01. Тпл. 35000С. Углерод полиморфен. При нормальных условиях стабильна модификация графита, алмаз представляет собой его метастабильную форму. При высоких давлениях и температурах стабильной становится форма алмаза.
Углерод растворим в железе, как в жидком, так и в твердом состоянии, а также образует химическое соединение – карбид Fe-Fe3C.
2. Фазы и структуры в железоуглеродистых сплавах.
Фазы в сплавах железо-углерод представляют собой жидкий сплав, твердые растворы – феррит и аустенит, а также цементит и свободный углерод в виде графита. Структуры – перлит, ледебурит.
Феррит (Ф или α) – твердый раствор внедрения углерода в -Fe. Он имеет ОЦК решетку, растворимость в которой углерода мала. Различают низкотемпературный и высокотем-пературный феррит. Предельная концентрация углерода в низкотемпературном Ф – 0,02%, минимум 0,002%, в высокотемпературном – 0,1%. Низкая растворимость углерода в -Fe обусловлена малым размером межатомных пор в ОЦК решетке. Атом углерода располагается в центре грани куба. Значительная доля атомов углерода размещается на дефектах (вакансиях, дислокациях).
Кроме углерода феррит растворяет N2 (твердый раствор внедрения) и легирующие металлы (твердые растворы замещения).
Феррит – мягкая, пластичная фаза, НВ 80-90.
Аустенит (А или γ)– твердый раствор внедрения углерода в γ-Fe. Имеет ГЦК решетку, межатомные поры в которой почти в 2 раза больше, чем в ОЦК. Растворимость углерода в γ-Fe достигает 2,14%. Аустенит также может растворять другие элементы, причем металлы образуют твердые растворы замещения. Аустенит пластичен, но более прочен, чем феррит, НВ 160-200.
Цементит (Ц) – химическое соединение железа с углеродом – Fe3C. Содержит 6,67% углерода и имеет сложную ромбическую решетку с плотной упаковкой атомов. При нормальных условиях цементит тверд (НВ 800) и хрупок. Он слабо ферромагнитен до температуры 2100С (т. А0). Цементит является метастабильной фазой. В условиях равновесия в сплавах с высоким содержанием углерода образуется графит. При высокой температуре цементит неустойчив и разлагается на графит и аустенит, поэтому Тпл. точно не определена и принимается приблизительно 15500С.
В цементите железо может замещаться Mn, Cr и другими металлами, углерод – частично азотом.
Графит - углерод, выделяющийся в железоуглеродистых сплавах в свободном состоянии. Он имеет гексагональную слоистую кристаллическую решетку. Межатомное расстояние в решетке небольшое. Графит огнеупорен, электропроводен, химически стоек, малопрочен, мягок.
Перлит – механическая смесь, состоящая из очень мелких пластинок, или зернышек цементита, расположенных в ферритной основе. Перлит является эвтектоидом. Эвтектоидом называется характерная равномерная пластинчатая или зернистая микросмесь, подобная эвтектике, но, в отличие от нее, образующаяся не из жидкого состояния, а при превращении твердого раствора.
Эвтектоиды, как и эвтектики, встречаются не только в сплавах железо – цементит (Fe-Fe3C), но и в других сплавах.
Поверхность травленого шлифа эвтектоидной стали имеет вид перламутра, отсюда и название (перлит).
В сплавах Fe-С, не содержащих примеси других компонентов, чистый перлит образуется при содержании 0,8% углерода. В сталях и чугунах, содержащих Si, Mn и другие элементы, чистый перлит получается при меньшем количестве углерода.
В зернистом перлите цементит имеет шарообразную форму. Такая структура часто встречается в высокоуглеродистых сталях, после специальной термической обработки (на зернистый перлит (цементит)). Механические свойства перлита зависят от дисперсности (степени измельчения) частичек цементита. Чем грубее и крупнее в перлите цементитные выделения, тем ниже его механические свойства. Твердость зернистого перлита колеблется в пределах НВ 160-220, а пластинчатого 200-250.
Ледебурит –представляет собой эвтектику, состоящую [в момент образования] из цементита и аустенита, предельно насыщенного углеродом. Содержание углерода в ледебурите 4,3%. Ледебурит отличается большой твердостью (НВ более 700) и хрупкостью. Ледебурит встречается в структуре белых и половинчатых чугунов. Имеет сотовое или пластинчатое строение. При медленном охлаждении – сотовое, при быстром – пластинчатое.