
- •Получение стали
- •Сравнение основных свойств железа, меди, алюминия, титана.
- •Атомно-кристаллическое строение металлов. Кристаллизация металлов. Типы кристаллических решеток, Полиморфизм. Анизотропия. Аморфное состояние.
- •Анизотропия свойств металлов.
- •Аморфное состояние металлов
- •Дефекты кристаллических решеток. Влияние плотности дислокаций на прочность . Влияние пластической деформации на структуру и свойства металлов. Дефекты кристаллического строения
- •Влияние пластической деформации на структуру и механические свойства металлов и сплавов
- •Превращения в наклепанном металле при нагреве. Изменения его структуры и свойств
- •Виды изломов. Методы исследования структуры материалов. Строение металлического слитка . Дефекты структуры.
- •Методы исследования структуры материалов
- •Металлографические методы Макроскопический анализ
- •Микроскопический анализ
- •Строение слитка.
- •Классификация дефектов
- •Методы исследования структуры металлов: макроскопический анализ. Макроскопический анализ
- •Методы исследования структуры металлов: микроскопический анализ. Микроскопический анализ
- •Методы исследования структуры и дефектов металлов: рентгеноструктурный анализ, пэм, сэм, узи и магнитопорошковый метод.
- •Методы определения твердости материалов. Понятие «твердость материала», «индентор».
- •Определение твердости материалов по методу Бринеля .Обозначение твердости по Бринелю на машиностроительных чертежах.
- •Определение твердости материалов по методу Роквелла .Обозначение твердости по Роквеллу на машиностроительных чертежах.
- •Определение твердости материалов по методу Викерса .Обозначение твердости по Викерсу на машиностроительных чертежах.
- •Порог хладноломкости
- •Понятие металлического сплава. Понятие «компонент», «фаза», «структура». Типы структур сплавов.
- •Строение металлического сплава: твердые растворы, механические смеси и химические соединения.
- •Диаграмма состояния эвтектического типа. Диаграммы состояния сплавов с ограниченной растворимостью. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии, с эвтектикой
- •4.5. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии, с перитектикой
- •Диаграммы эвтектического типа
- •Диаграмма состояния системы, в которой компоненты образуют непрерывный ряд твердых растворов.
- •Связь между свойствами сплавов и типом диаграммы состояния
- •Диаграмма состояния железо-углерода.
- •Фаза и структуры в системе железо-углерод, их краткие характеристики
- •2. Фазы и структуры в железоуглеродистых сплавах.
- •Стали обыкновенного качества. Маркировка. Автоматные стали.
- •Конструкционные
- •Инструментальные;
- •С особыми физико-химическими характеристиками.
- •Углеродистые инструментальные стали . Характеристика и маркировка. Углеродистые инструментальные стали Основные характеристики:
- •Применение
- •Маркировка
- •Углеродистые качественные конструкционные стали. Классификация качественных углеродистых сталей
- •Общая характеристика качественных углеродистых сталей
- •Применение качественной конструкционной углеродистой стали
- •Особенности маркировки
- •Чугун. Влияние формы углерода на свойства чугуна. Структуры чугунов. Маркировка чугунов.
- •Белый чугун, его состав, структура, свойства, область применения.
- •Марки чугунов. Специальные чугуны (антифрикционный, жаростойкий и жаропрочный чугун). Специальные чугуны
- •Антифрикционные чугуны
- •Классификация легированных сталей.
- •Инструментальные легированные стали. Штампованные стали. Быстрорежущие стали.
- •Штампованные стали
- •Быстрорежущие стали
- •Быстрорежущие стали. Свойства и маркировка.
- •Расшифровка обозначения марок сталей
- •Легированные стали с особыми свойствами. Коррозионностойкие, жаростойкие , жаропрочные, износостойкие. Влияние легирующих элементов на свойства. Примеры марок.
- •Хладостойкие стали и сплавы
- •Твердые инструментальные сплавы. Классификация, маркировка. Сравнение с инструментальными сталями . Твердые сплавы и их маркировка
- •Краткое сравнение твердых сплавов с другими инструментальными материалами
- •Упрочняющая и разупрочняющая термическая обработка металлов. Критические точки . Превращение аустенита при охлаждении.
- •Отжиг и нормализация, как виды термической обработки стали.
- •Объемная закалка стали. Охлаждающие среды. Закаливаемость и прокаливаемость сталей. Поверхностная закалка.
- •Способы объемной закалки
- •Этапы закалки стали
- •Способы охлаждения при закаливании стали
- •Поверхностная закалка
- •Внутренние напряжения в закаленной стали. Отпуск стали. Закалка сталей. Внутренние напряжения при закалке.
- •Закалочные среды. Способы закалки.
- •Отпуск стали.
- •Виды хто стали. Диффузионное насыщение поверхности металлами и неметаллами.
- •Цементация стали.
- •Азотирование стали.
- •Нитроцементация и цианирование стали.
- •Медь и ее сплавы. Свойства. Маркировка.
- •Алюминий и его сплавы. Свойства. Маркировка.
- •Неметаллические машиностроительные материалы. Композиционные материалы.
- •1. Классификация композиционных материалов
- •2. Состав, строение и свойства композиционных материалов
Методы исследования структуры и дефектов металлов: рентгеноструктурный анализ, пэм, сэм, узи и магнитопорошковый метод.
Структурой называют строение металлов и сплавов в виде мелких обособленных частиц, имеющих форму зерен, дендритов, пластинок или других характерных составляющих. Многие свойства металлов и сплавов зависят от структуры материалов.Различают макро- и микроструктуру металлов и сплавов:Макроструктура - строение металлов или сплавов, видимое невооруженным глазом или при небольшом увеличении под микроскопом до 40 раз. Микроструктура - строение металлов или сплавов, видимое с помощью металлографического микроскопа. Макроструктуру изучают двумя способами: по излому образца или на макро-шлифах.Излом образцов - наиболее простой способ исследования структуры металлов и сплавов. По излому обычно определяют крупность зерна и взаимное расположение дендритов в металлах и сплавах. Как правило, чем крупнее зерно, тем ниже механические свойства металлов.Макрошлиф-специальный образец, который изготовляют следующим образом.Из крупной поковки заготовки или слитка вырезают образец в виде пластины (темплет). Затем одну из плоскостей шлифуют и полируют на станках. После чего отполированную поверхность подвергают травлению специальными реактивами, которые по-разному вступают в химическое взаимодействие с каждой структурной составляющей металла.
В результате испытания каждая структурная составляющая имеет определенный оттенок черно-белого цвета. По этим оттенкам определяют форму и расположение зерен и дендритов в структуре отливок, волокон или деформированных зерен в поковках и прокате. Подготовленный микрошлиф рассматривают с помощью металлографического микроскопа, дающего увеличение до 2000 раз, и определяют неметаллические включения, мелкие трещины.Чтобы выяснить микроструктуру, обезжиренный шлиф подвергают травлению специальными реактивами, действие и назначение которых такое же, как и при изучении макроструктуры. В качестве реактива применяют: для углеродистых сталей и чугунов - 4%-ный раствор азотной кислоты в этиловом спирте, для медных сплавов--8%-ный аммиачный раствор хлористого кальция, для алюминиевых сплавов - 0,5%-ный водный раствор фтористой кислоты.После травления структуру шлифа рассматривают с помощью металлографического микроскопа. От оптических параметров объектива и окуляра зависит увеличение микроскопа. Наряду с металлографическим применяют электронный микроскоп, который дает увеличение до 100 000 раз и более.Рентгеновский анализ для изучения кристаллического строения металлов и выявления в них внутренних пороков.
У рентгеновских лучей длина волны в 10 000 раз меньше световых, что позволяет им глубоко проникать внутрь непрозрачных тел и отражаться от атомов. Это позволяет выявить их расположение в пространстве, т. е. установить тип пространственной решетки.
Рентгеновское просвечивание применяется для контроля литых, сварных, катаных, штампованных, кованых и других деталей с целью выявления внутренних дефектов, раковин, непроваров, трещин, неметаллических включений.
Магнитным методом исследуют дефекты в магнитных металлах (стали, никеле и др.) на глубине до 2 мм (непровар в сварных швах, трещины и т. д.).
С помощью ультразвукового метода (ультразвуковая дефектоскопия) выявляют дефекты, расположенные глубоко в толще металла. Для этого используются ультразвуковые дефектоскопы, с помощью которых через толщу металла пропускают пучок ультразвуковых волн и контролируют их прохождение. Любая несплошность металла нарушает нормальное распространение волн, что можно увидеть на экране имеющегося в приборе осциллографа.