- •Основные понятия тмм. Машина. Механизм. Звено. Кинематическая пара. Кинематическая цепь. Виды механизмов.
- •Степень подвижности плоских и пространственных механизмов.
- •3.Основные принципы образования плоских рычажных механизмов. Классификация структурных групп Ассура.
- •4.Задачи и методы кинематического анализа механизмов. Аналоги скоростей и ускорений.
- •5.Кинематический анализ рычажных механизмов методом векторного замкнутого круга.
- •6.Кинематический анализ рычажных механизмов методом планов.
- •7.Классификация зубчатых механизмов. Передаточное отношение. Классификация зубчатых механизмов
- •8. Кинематика зубчатых механизмов с неподвижными осями колес.
- •Механизм с рядовым соединением колес
- •9.Кинематика дифференциальных и планетарных механизмов.
- •Методика приведения сил
- •11.Уравнения движения машинного агрегата в энергетической и дифференциальной формах.
- •12.Режимы движения машинного агрегата.
- •13.Определния закона движения звена приведения.
- •14.Неравномерность вращения приводного вала вращения( звена приведения) и способы уменьшения неравномерности вращения.
- •15.Задачи и методы силового расчета механизмов.
- •16.Определение сил инерции.
- •17.Условия статистической определимости кинематических цепей.
- •20.Виды трения. Основные закономерности сухого трения скольжения.
- •Закономерности сухого трения
- •21.Трение в поступательных кинематических парах. Потери мощности на преодоление сил трения.
- •22.Трение во вращательных парах. Потери мощности на преодоление сил трения.
- •23.Трение в винтовой кинематической паре.
- •24.Трение качения в высших в кинематических парах. Потери мощности на преодоление сил трения качения.
- •25.Механический кпд. Кпд при последовательном и параллельном соединении механизмов.
- •26.Неуравновешенность вращающихся масс и ее виды.
- •27.Уравновешение механизмов на фундаменте.
- •28.Уравновешивание вращающихся масс ,расположенных в одной плоскости.
- •29.Динамическая балансировка вращающихся масс.
- •30.Основная теорема зубчатого зацепления(теорема Виллиса).
- •31.Эвольвента окружности, ее уравнения и свойства.
- •32.Основные геометрические параметры зубчатого колеса.
- •33.Свойства эвольвентного зацепления.
- •34.Общие сведения о неэвольвентных зубчатых зацеплениях.
- •35.Качественные показатели зубчатого зацепления.
- •36.Методы нарезания зубчатых колес. Станочное зацепление.
- •37.Явление подрезания зубьев. Определение минимального числа зубьев нулевого колеса, нарезаемого без подрезания.
- •38.Определение параметров зубчатых колес и передачи, составленной из колес со смещением.
- •39.Виды и назначение кулачковых механизмов. Фазы движения выходного звена. Законы движения выходного звена.
- •40.Угол давления в кулачковых механизмах. Влияние его величины на работоспособность механизма.
- •41.Определение основных размеров механизма из условий не превышения допускаемого угла давления.
- •42.Построение профиля кулачка по заданному закону движения толкателя.
16.Определение сил инерции.
Сила инерции – фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования уравнения F1+F2+…Fn = ma к виду
F1+F2+…Fn–ma = 0, где Fn – реально действующая сила, а ma – «сила инерции».
Закон инерции про инерционные системы отсчёта гласит, что без влияния неуравновешенных сил тело будет сохранять свою скорость или неподвижность. В качестве примера силы инерции можно рассмотреть простую силу инерции, которую можно ввести в равноускоренной системе отсчёта:
Написать пример с быстро останавливающимся автобусом полным пассажирами.
Среди сил инерции выделяют следующие:
простую силу инерции, которую мы только что рассмотрели;
центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта;
силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;
С точки зрения общей теории относительности, гравитационные силы в любой точке – это силы инерции в данной точке искривлённого пространства Эйнштейна (см. принцип эквивалентности).
17.Условия статистической определимости кинематических цепей.
Необходимо помнить, что кинематические цепи, имеющие степень подвижности w=0, в силовом отношении являются статически определенными. Условие статической определимости плоских кинематических цепей записывается в виде:
где n - число подвижных звеньев;
– число кинематических пар 5 и 4 классов;
3 – число уравнений статики, которое можно составить для каждого подвижного звена в плоскости.
18-19.Кинетостатистический силовой расчет рычажных механизмов методом планов и аналитическим методом.
Кинетостатический метод расчета позволяет находить реакции в кинематических парах, а также определить уравновешивающую силу (или уравновешивающий момент пары сил). Под уравновешивающими силами понимают силы, приложенные к ведущим звеньям, которые уравновешивают систему всех внешних сил и пар сил и всех сил инерции и пар сил инерции. Если механизм имеет несколько степеней свободы, то для его равновесия необходимо столько уравновешивающих сил или пар сил, сколько имеется степеней свободы.
Графическое определение реакций в кинематических парах плоских механизмов с помощью планов сил применяется не только вследствие наглядности, но и потому, что внешние силы, действующие на звенья механизма, обычно известны лишь приближённо, и точность простейших графических построений оказывается вполне достаточной.
Силовой анализ механизмов методом построения планов сил рассмотрим на примере шарнирного четырёхзвенного механизма (рис. 1). Считаем, что по заданному закону движения начального звена 1 выполнен кинематический анализ и определены силы и пары сил инерции: кривошипа 1 Ри1; шатуна 2 Ри2, Ми2; коромысла 3 Ри3, Ми3.
Решение задачи начинают с построения кинематической схемы механизма (рис. 1, а) с приложенными силами. Силовой анализ проводят в порядке отсоединения групп Ассура.
25а Шарнирный четырёхзвенный механизм
