- •Основные понятия тмм. Машина. Механизм. Звено. Кинематическая пара. Кинематическая цепь. Виды механизмов.
- •Степень подвижности плоских и пространственных механизмов.
- •3.Основные принципы образования плоских рычажных механизмов. Классификация структурных групп Ассура.
- •4.Задачи и методы кинематического анализа механизмов. Аналоги скоростей и ускорений.
- •5.Кинематический анализ рычажных механизмов методом векторного замкнутого круга.
- •6.Кинематический анализ рычажных механизмов методом планов.
- •7.Классификация зубчатых механизмов. Передаточное отношение. Классификация зубчатых механизмов
- •8. Кинематика зубчатых механизмов с неподвижными осями колес.
- •Механизм с рядовым соединением колес
- •9.Кинематика дифференциальных и планетарных механизмов.
- •Методика приведения сил
- •11.Уравнения движения машинного агрегата в энергетической и дифференциальной формах.
- •12.Режимы движения машинного агрегата.
- •13.Определния закона движения звена приведения.
- •14.Неравномерность вращения приводного вала вращения( звена приведения) и способы уменьшения неравномерности вращения.
- •15.Задачи и методы силового расчета механизмов.
- •16.Определение сил инерции.
- •17.Условия статистической определимости кинематических цепей.
- •20.Виды трения. Основные закономерности сухого трения скольжения.
- •Закономерности сухого трения
- •21.Трение в поступательных кинематических парах. Потери мощности на преодоление сил трения.
- •22.Трение во вращательных парах. Потери мощности на преодоление сил трения.
- •23.Трение в винтовой кинематической паре.
- •24.Трение качения в высших в кинематических парах. Потери мощности на преодоление сил трения качения.
- •25.Механический кпд. Кпд при последовательном и параллельном соединении механизмов.
- •26.Неуравновешенность вращающихся масс и ее виды.
- •27.Уравновешение механизмов на фундаменте.
- •28.Уравновешивание вращающихся масс ,расположенных в одной плоскости.
- •29.Динамическая балансировка вращающихся масс.
- •30.Основная теорема зубчатого зацепления(теорема Виллиса).
- •31.Эвольвента окружности, ее уравнения и свойства.
- •32.Основные геометрические параметры зубчатого колеса.
- •33.Свойства эвольвентного зацепления.
- •34.Общие сведения о неэвольвентных зубчатых зацеплениях.
- •35.Качественные показатели зубчатого зацепления.
- •36.Методы нарезания зубчатых колес. Станочное зацепление.
- •37.Явление подрезания зубьев. Определение минимального числа зубьев нулевого колеса, нарезаемого без подрезания.
- •38.Определение параметров зубчатых колес и передачи, составленной из колес со смещением.
- •39.Виды и назначение кулачковых механизмов. Фазы движения выходного звена. Законы движения выходного звена.
- •40.Угол давления в кулачковых механизмах. Влияние его величины на работоспособность механизма.
- •41.Определение основных размеров механизма из условий не превышения допускаемого угла давления.
- •42.Построение профиля кулачка по заданному закону движения толкателя.
12.Режимы движения машинного агрегата.
В зав-сти от того какую работу сов-ют внешние силы машины различают три режима движ.: разгон (разбег, пуск), торможение (выбег, останов) и установившееся движение.
Установившимся движ. мех-зма наз. такое движ., при котором его обобщенная скорость и кин. энергия являются периодическими функциями времени. Мин. промежуток в начале и в конце которого повторяются знач. кин. энергии и обобщенной скорости механизма – называют временем цикла установившегося движения.
Для идеальной механич. сис-мы, в которой нет потерь энергии и звенья абсолютно жесткие при получении уравнений движ. механизма можно воспользоваться теоремой об изменении кин. энергии: разность энергии за какой либо промежуток времени равна работе сил за тот же промежуток времени.
где Ад.с. – работа движущих сил; Ап.с. – работа сил производственных сопротивлений; Ав.с. – работа сил вредных сопротивлений (трения и внешней среды); АG – работа сил веса.
Для режима разгона: ωi0 = 0, Ап.с. = 0, тогда:
Работа
движ. сил при разгоне расходуется кин.
энергию, работу сил вредных сопротивлений
и веса. При установившемся движ. за
каждый цикл движ. работа всех внешних
сил равна нулю
. Для
режима выбега: ωi =
0, Ад.с. =
0, Ап.с. =
0 тогда:
Запасённая кинетическая энергия при выбеге тратится на преодоление работ сил вредных сопротивлений и веса. Режимы разгона и выбега называют режимами неустановившегося движения.
13.Определния закона движения звена приведения.
Сущность метода определение законов движения звеньев и всего механизма сводится к интегрированию дифференциальных уравнений F = m*(d2s/dtau2) или T = J*(d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона).
Особенность определения законов движения звеньев:
многочисленность звеньев в сложных механизмах, поэтому для каждого звена могут быть свои законы движения;
связанность звеньев и следовательно, их движений
Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего механизма. Это значит, что энергия и характер ее изменения для звена приведения и для всего механизма в каждый момент времени одинаковы.
14.Неравномерность вращения приводного вала вращения( звена приведения) и способы уменьшения неравномерности вращения.
-
15.Задачи и методы силового расчета механизмов.
Задачи:
определение сил, действующих на звенья или на связи механизма;
определение уравновешивающей силы (уравновешивающего момента) на входном звене.
Цели:
накопление необходимых данных для последующего проектирования и конструирования механизма.
Методы решения:
принцип Даламбера: если добавить силу энерции, то система будет находиться в мгновенном равновесии и к ней применимы все законы статики;
состояние механической системы не изменится, если связи отбросить, а их действие заменить реакциями:
