Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОНСПЕКТ ТММ.docx
Скачиваний:
15
Добавлен:
04.07.2024
Размер:
4.43 Mб
Скачать

28.Уравновешивание вращающихся масс ,расположенных в одной плоскости.

Уравновешивание масс состоит в устранении переменных реакций на опоры от сил инерции. Для полного устранения этих реакций главный вектор и главный момент инерции должны быть равны нулю.

- динамическое уравновешивание.

- статическое уравновешивание.

29.Динамическая балансировка вращающихся масс.

При динамической неуравновешенности главная центральная ось инерции пересекает ось вращения не в центре масс ротора точке S, либо перекрещивается с ней; и главный вектор дисбалансов , и главный момент дисбалансов МD не равны нулю (Dс≠0, МD ≠0), т. е. необходимо уравновесить вектор  и момент дисбалансов МD. Для этого достаточно разместить на роторе две корректирующих массы mk1 и mk2 на расстояниях от оси вращения ek1 и ek2, а от ценра масс S, соответственно на lk1 и lk2. Массы выбираются и размещаются так, чтобы момент их дисбалансов MDk был по величине равен, а по направлению противоположен моменту дисбалансов ротора МD:

,где Dk1 и Dk2 –дисбалансы корректирующих масс,  и  

Векторная сумма дисбалансов при этом должна быть равна и противоположно направлена вектору :

В этих зависимостях величинами lki и eki задаются по условиям удобства размещения противовесов на роторе, а величины mki рассчитывают.

Таким образом, условие динамической уравновешенности ротора заключается в .

30.Основная теорема зубчатого зацепления(теорема Виллиса).

Для постоянства передаточного отношения при зацеплении двух профилей зубьев необходимо, чтобы радиусы начальных окружностей зубчатых колёс, перекатывающихся друг по другу без скольжения, оставались неизменными. Если рассмотреть обращённое движение начальных окружностей, когда всей системе задана угловая скорость (), то второе колесо будет условно неподвижным иточка Р является мгновенным центром относительного вращения колёс (рис. 70,а). Эта точка, называемая полюсом зацепления, где контактируют начальные окружности, делит межцентровое расстояние на отрезки, обратно пропорциональные угловым скоростям, т. к.

Рассмотрим обращённое движение профилей зубьев зубчатых колёс (рис. 70, б).

рис. 70

Точка контакта зубьев (точка к), принадлежащая первому колесу, вращается вокруг точки Р, которая будет мгновенным центром скоростей. Скорость и совпадает с общей касательной к профилям в точкек при условии постоянства этого контакта.

Впротивном случае постоянного контакта не будет, так как появится составляющаяи профили разомкнутся (рис. 71). Так как рассматривается произвольное положение зубьев, то можно сформулировать теорему.

Нормаль NN к касающимся профилям зубьев,

рис. 71 проведённая через точку их касания, делит межцентровое расстояние на части, обратно пропорциональные угловым скоростям.

Эта теорема, сформулированная Виллисом в 1841 г., определяет основной закон зацепления профилей, которые не могут быть произвольными, а должны быть специально подобраны.