
- •Сибирская Аэрокосмическая Академия
- •Статический метод
- •Энтропия и её свойства
- •Энтропия сложной системы
- •Условная энтропия. Объединение зависимых систем.
- •Полная условная энтропия
- •Теорема сложения энтропий
- •Определение информационных потерь в каналах связи
- •Энтропия и информация
- •Взаимная информация
- •Сумма равна единице
- •Частная информация о системе
- •Частная информация о событии, получаемая в результате сообщения о другом событии.
- •Энтропия и информация для систем с непрерывным множеством состояний
- •Условная энтропия непрерывной системы
- •Количественное определения избыточности
- •Блочное кодирование
- •Избыточность от округления
- •1 Символ – 4 бита
- •Код Хафмана
- •Процедура кодирования
- •Передача информации по дискретным каналам связи
- •Основная теорема Шеннона о кодировании для дискретного канала без помех
- •Дискретный канал с помехами
- •Теорема о кодировании Шеннона для дискретного канала с помехами
- •Корректирующие коды
- •Исправление ошибок с помощью полной кодовой таблицы
- •Разбиение
- •Систематические коды
- •Декодирование систематических кодов
- •Код Хэминга
- •Декодирование кода Хэминга
- •Особенности декодирования.
- •Циклические коды
- •Декодирование циклических кодов
- •Построение декодированного конкретного циклического кода
- •Обнаружение и определение ошибок
- •Коды, обнаруживающие трёхкратные ошибки
Сибирская Аэрокосмическая Академия
Кафедра ИУС
Лекции по предмету
"Теория информации"
Мурыгин А. В.
Красноярск 2002
Информация. Язык. Общество
Всякий организм, в том числе и общ-й скрепляется наличием средств использования, хранения и передачи информации. Очень мало стабилизирующих процессов.
Теория информации развивалась как наука в конце 40-х г.г. В её основу положены труды Шеннона, Винера, Колмогорова, Котельникова. Это полуматематическая наука, т.е. прикладное приложение к математике.
Измерение информации
Важным вопросом в теории информации является установленные меры информации. В качестве меры информации выделяют структурные и статические меры. Структурные меры рассматривают дискретное строение массивов информации и измеряют информацию подсчётом числа возможных информационных измерений. Статические методы учитывают вероятность появления информационных символов и в качестве меры информации используют понятие энтропия – мера неопределённости состояния систем.
Структурный метод
Структурные методы имеют дело с информационными массивами. Массив информации представим в виде кубика.
n
– длина
передаваемого числа; m
– глубина числа; Поле
– набор из элементов чисел m
из гнезда выдвигаются нужное число,
а
число определено.
поле
m -
гнездо
n
Все ячейки называются числовой грядой (один слой). Совокупность слоев – это поле.
Количество
чисел, которое может быть представлено
с помощью одной числовой гряды:
В
1928г американец Хартли предложил
использовать логическую меру:- это мера информации по Хартли (аддитивная
мера по Хартли) количество информации,
измеренное такой мерой, измеряется в
битах (это название даёт основаниеlog2).
Если глубина числа m
= 2 – это двоичная мера информации (0 или
1), если m
= 1, то кол-во информации равно один бит.
Это соответствует одному элементарному
событию.
Статический метод
Обычно элементы сообщений не равновероятны, и это обстоятельство влияет на количество переданной информации. Пусть имеется алфавит из m элементов h1, h2, …,hm – элементы алфавита. Вероятности появления символов равны p1, p2, …,pm. Составим из этих элементов сообщения, содержащее n элементов. Среди них будут n1 элементов h1, n2 элементов h2, … nm элементов hm .
Предположим, что появление каждого элемента независимое событие. Тогда вероятность появления определённой комбинации выражается произведением единичных вероятностей отдельных элементов и эту вероятность можно записать:
При достаточно большой длине числа n, можно считать, что ni определяется как pi*n. Кроме того можно считать, что все сообщения равновероятны, тогда вероятность отдельного сообщения:
N
– количество
переданных сообщений;
I
= log2N
– количество
информации =
Кол-во информации, отнесённое к одному символу
-
энтропия
Такая мера информации была введена Шенноном. Количество информации по Шеннону определяется как I. Измеряется [бит/символ]. Она характеризует количество переданной информации при неравновероятности появления символов и характеризует неопределённость состояния сообщения.