
- •Федеральное агентство воздушного транспорта
- •Вероятностно-статистические модели эксплуатации летательных аппаратов
- •Редактор л.Е. Паталова
- •Введение
- •Раздел 1. Формирование вероятностно-статистических моделей объектов эксплуатации летательных аппаратов
- •1.2. Законы распределения непрерывных случайных величин, используемые при формировании вероятностно-статистических моделей
- •2. Параметрические и непараметрические модели оценки вероятностно-статистических характеристик объектов эксплуатации
- •2.1. Формирование параметрических моделей оценки случайных характеристик объектов
- •2.2. Проверка соответствия выбранной модели экспериментальным данным с помощью критериев согласия
- •2.3. Формирование непараметрических моделей оценки случайных характеристик объектов эксплуатации
- •2.4. Непараметрические критерии согласия
- •3. Точечная и интервальная оценка характеристик случайных величин объектов эксплуатации
- •3.1. Точечная оценка характеристик случайных величин
- •3.2. Интервальная оценка характеристик случайных величин. Доверительные границы
- •3.3. Определение доверительных границ для различных законов распределения
- •3.4. Прогнозирование случайных характеристик по времени работы
- •4. Дискретные вероятностно-статистические модели объектов эксплуатации
- •4.1. Использование законов распределения дискретных случайных величин
- •4.2. Законы распределения дискретных случайных величин, используемые при формировании вероятностно-статистических моделей
- •4.3. Модели приемочного контроля
- •4.4. Определение оперативных характеристик контроля
- •4.5. Формирование моделей статистического контроля по альтернативному признаку
- •Раздел 2. Вероятностно-статистические модели процессов эксплуатации летательных аппаратов
- •5. Случайные процессы. Классификация случайных процессов
- •5.1. Процессы эксплуатации как случайные процессы
- •5.2. Классификация случайных процессов
- •5.3. Марковские случайные процессы
- •5.4. Пуассоновский процесс
- •6.2. Стационарные случайные процессы
- •6.3. Вероятностно-статистические модели на основе непрерывных Марковских процессов Определение и основные уравнения для непрерывных Марковских процессов
- •6.4. Анализ модели изменения параметров объектов.
- •7. Однородные конечные цепи Маркова
- •7.1. Определение однородной конечной цепи Маркова
- •7.2. Графическое отображение конечной цепи Маркова
- •7.3. Эргодическая цепь Маркова
- •8. Дискретные Марковские процессы с непрерывным временем
- •8.1. Потоки событий
- •8.2. Дифференциальные уравнения Колмогорова. Предельные вероятности состояний
- •8.3. Решение системы алгебраических уравнений предельных вероятностей состояний с помощью математического пакета Mathcad
- •Решение системы алгебраических уравнений с помощью встроенной функции find
- •9. Полумарковские процессы эксплуатации
- •9.1. Определение и основные свойства полумарковских процессов эксплуатации
- •9.2. Основные соотношения для полумарковских моделей
- •9.3. Примеры моделей полумарковских процессов эксплуатации
- •10. Модели процессов восстановления
- •10.1. Понятие восстановления. Классификация процессов восстановления
- •10.2. Модели процессов восстановления
- •10.3. Характеристики процессов восстановления
- •0 TBt
- •Раздел 3. Модели идентификации объектов и процессов эксплуатации ла
- •11. Анализ временных рядов показателей объектов и процессов эксплуатации
- •11.1. Временные ряды показателей эффективности процессов эксплуатации
- •11.2. Анализ временных рядов. Компонентные составляющие временного ряда
- •11.3 Выбор кривой сглаживания значений исходного ряда
- •12. Модели корреляционно-регрессионного анализа показателей объектов и процессов эксплуатации
- •12.1. Понятие корреляции и регрессии
- •12.2. Модели корреляционного анализа
- •12.3. Модели регрессионного анализа
- •12.4. Использование метода наименьших квадратов для формирования линейной модели регрессии
- •12.5. Нелинейная регрессия
- •Использование системы Mathcad для построения
- •13. Модели эксплуатации на основе метода динамики средних
- •13.1. Сущность метода динамики средних
- •13.2. Математическое описание метода динамики средних
- •13.3. Примеры применения уравнений динамики средних для решения эксплуатационных задач с использованием системы Mathcad
- •Коэффициенты для распределения Вейбулла
- •Значение гамма - функции
- •Значения (критерий Колмогорова)
- •Коэффициенты для определения доверительных границ среднего квадратического отклонения
- •Литература
- •Раздел 1. Формирование вероятностно-статистических моделей объектов эксплуатации летательных аппаратов ……………………………………………….4
- •Раздел 2. Вероятностно-статистические модели процессов эксплуатации летательных аппаратов………………………………………………………………...42
- •Раздел 3. Модели идентификации объектов и процессов эксплуатации ла…………………………………………………………………………………77
7.2. Графическое отображение конечной цепи Маркова
Наглядной геометрической схемой конечной цепи Маркова является размеченный граф состояний, в котором у стрелок, показывающих возможные переходы, представляются вероятности этих переходов.
Сказанное
проиллюстрируем примером для цепи
Маркова применительно к объекту, который
может находиться в шести состояниях:
и
(рис. 7.1).
Переходы
из некоторого
-го
состояния в
-е
состояние возможны в некоторые заранее
определенные, фиксированные моменты
времени
.
Рис. 7.1
В эти моменты времени может реализоваться любая последовательность дискретных состояний, например:
На рис. 7.1 пунктирными стрелками изображена одна из возможных реализаций процесса, которая соответствует следующей пошаговой последовательности состояний:
(7
шагов).
На
третьем шаге состояние не изменилось,
что отражается пунктирной стрелкой,
выходящей из
и в то же состояние входящей.
Стохастическая матрица переходов для размеченного графа, изображенного на рис. 7.1, будет иметь следующий вид:
(7.2)
7.3. Эргодическая цепь Маркова
Ранее
было отмечено, что стационарный случайный
процесс обладает эргодическим свойством,
когда вместо множества реализаций для
определения его характеристик достаточно
одной реализации этого процессапри
достаточно большом
.Это
означает замены средних значений, взятых
по множеству реализаций, средними во
времени для одной реализации стационарного
случайного процесса.Свойство эргодичности
однородной цепи Маркова означает, что
переходные вероятности
при достаточно большом
стремятся независимо от
-го
состояния к некоторой стационарной
величине.
Другими
словами, эргодическая цепь Маркова –
это однородная по времени цепь Маркова
,
обладающая следующим свойством: существют
независимые от
величины:
.
(7.3)
Это
означает, что матрица
( 7.1) превращена в матрицу из одной строки
(7.4)
Распределение
на множестве состояний
называется стационарным распределением,
т.е. распределение
для разных
при достаточно большом
заменено одним распределением.
8. Дискретные Марковские процессы с непрерывным временем
8.1. Потоки событий
В отличие от Марковской цепи, при которой переходы из состояния в состояние происходят в определенные фиксированные моменты времени, Марковский процесс с дискретными состояниями и непрерывным временем характерен тем, что переходы между состояниями происходят в случайные моменты времени. Эти переходы образуют случайный поток событий, т.е. последовательность однородных событий, следующих один за другим в какие-то случайные моменты времени.
Поток
событий может быть охарактеризован
интенсивностью
.
Интенсивность (или «плотность») потока
событий – это среднее число событий в
единицу времени. Если
, то поток событий являетсястационарным
, если
, т.е. зависит от времени, то поток событий
являетсянестационарным.
Другой важнейшей характеристикой потока событий является закон распределения времени между отдельными событиями. Существенно, что для Марковского случайного процесса с дискретными состояниями и непрерывным временем функция распределения времени между событиями есть экспоненциальный закон распределения, т.е.:
(8.1)
Поскольку Марковский процесс по определению является процессом без последствия, то и поток событий, образующий этот процесс, является потоком
без последствия. Это означает, что события, образующие поток, появляются независимо друг от друга. Как правило, потоки событий, образующие Марковский процесс, являются ординарными. Ординарность потока означает, что события в потоке происходят поодиночке, а не группами.
Стационарный,
без последствия и ординарный поток
событий называется простейшим,
или стационарным
пуассоновским потоком.
Термин пуассоновский поток означает,
что число событий, попадающих на участок
(рис. 8.1), распределено по закону
Пуассона
.
(8.2)
Здесь
- вероятность попадания на участок
равно
событий.
Рис. 8.1