Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_bkh (1).docx
Скачиваний:
23
Добавлен:
01.07.2024
Размер:
5.44 Mб
Скачать

82. Пути образования и использования ацетоуксусной кислоты в организме. Нарушение и регуляция липидного обмена.

Ацетоуксусная кислота в процессе метаболизма способна окисляться до ацетона с выделением молекулы углекислого газа. Ацетоуксусная кислота или ацетоуксусный эфир-β-кетонокислота, отличающаяся непрочностью.Ацетоуксусная к-та-органическая кислота, вырабатываемая в больших количествах печенью в процессе метаболизма и вступающая с большой скоростью в окислительные реакции с жирными кислотами (например, при голодании). Образовавшаяся ацетоуксусная кислота при достаточно высокой концентрации инсулина превращается в ацетилкоэнзим-А, а в отсутствии инсулина - в гидроксимасляную кислоту и ацетон, который выводится из организма. Когда от цепочки жирной кислоты отщепляется ацетил-КоА, 2 молекулы этого вещества, объединяясь, формируют молекулу ацетоуксусной кислоты, которая затем транспортируется кровью в другие клетки организма, где она может использоваться для получения энергии. Часть ацетоуксусной кислоты превращается в гидроксимасляную кислоту, совсем небольшое количество превращается в ацетон. Ацетоуксусная кислота, гидроксимасляная кислота и ацетон свободно диффундируют через мембраны клеток печени и транспортируются кровью к периферическим тканям. Здесь эти вещества вновь диффундируют через мембраны внутрь клеток, где наблюдаются обратные реакции и образуются молекулы ацетил-КоА. Ацетил-КоА, в свою очередь, вступает в цикл лимонной кислоты и окисляется, давая энергию в форме АТФ. При голодании увеличивается секреция глюкагона, при физической работе - адреналина. Эти гормоны, действуя через аденилатциклазную систему, стимулируют мобилизацию жиров. Ожирение - важнейший фактор риска развития инфаркта миокарда, инсульта, сахарного диабета, артериальной гипертензии и желчнокаменной болезни. Ожирением считают состояние, когда масса тела превышает 20% от "идеальной" для данного индивидуума. Первичное ожирение развивается в результате алиментарного дисбаланса - избыточной калорийности питания по сравнению с расходами энергии. Суточные потребности организма в энергии складываются из: основного обмена - энергии, необходимой для поддержания жизни; основной обмен измеряют по поглощению кислорода или выделению тепла человеком в состоянии покоя утром, после 12-часового перерыва в еде; энергии, необходимой для физической активности. Вторичное ожирение - ожирение, развивающееся в результате какого-либо основного заболевания, чаще всего эндокринного. Например, к развитию ожирения приводят гипотиреоз, синдром Иценко-Кушинга, гипогонадизм и многие другие заболевания.

83. Биосинтез триацилглицеридов и фосфолипидов. Функции фосфолипидов. Регуляция и патология липидного обмена.

Фосфолипиды - большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности . Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма. Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол - важный компонент мембран и регулятор свойств гидрофобного слоя. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны , в очень низких концентрациях. Например, тромбоцитактивирующий фактор - фосфолипид особой структуры - оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10 -12 М . Жирные кислоты - структурные компоненты различных липидов. В составе фосфолипидов и сфинголипидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщенных жирных кислот преобладает над насыщенными . Фосфолипиды делят на глицерофосфолипиды , основу которых составляет трёхатомный спирт глицерол , и сфингофосфолипиды - производные аминоспирта сфингозина . Благодаря своим свойствам фосфолипиды не только являются основой всех клеточных мембран, но и выполняют другие функции: образуют поверхностный гидрофильный слой липопротеинов крови, выстилают поверхность альвеол, предотвращая слипание стенок во время выдоха. Некоторые фосфолипиды участвуют в передаче гормонального сигнала в клетки. Сфингомиелины являются фосфолипидами , формирующими структуру миелиновых оболочек и других мембранных структур нервных клеток. Плазмалогены - фосфолипиды , у которых в первом положении глицерола находится не жирная кислота, а остаток спирта с длинной алифатической цепью, связанный простой эфирной связью. Характерный признак плазмалогенов - двойная связь между первым и вторым атомами углерода в алкильной группе. Плазмалогены составляют до 10% фосфолипидов мембран нервной ткани; особенно много их в миелиновых оболочках нервных клеток. Некоторые типы плазмалогенов вызывают очень сильные биологические эффекты, действуя как медиаторы. Например, тромбоцитактивирующий фактор (ТАФ) стимулирует агрегацию тромбоцитов. Церамиды - основа большой группы липидов - гликолипидов. Водород в гидроксильной группе церамида может быть замещён на разные углеводные фрагменты. Гликолипиды находятся в основном в мембранах клеток нервной ткани. Ганглиозиды - наиболее сложные по составу липиды. Они содержат несколько углеводных остатков, среди которых присутствует N-ацетилнейраминовая кислота. Главная роль ганглиозидов определяется их участием в осуществлении межклеточных контактов. Некоторые ганглиозиды служат своеобразными рецепторами для ряда бактериальных токсинов. . В организме человека основной стероид - холестерол , остальные стероиды - его производные. Метаболизм фосфолипидов тесно связан со многими процессами в организме: образованием и разрушением мембранных структур клеток, формированием ЛП, мицелл жёлчи, образованием в альвеолах лёгких поверхностного слоя, предотвращающего слипание альвеол во время выдоха. Обмен глицерофосфолипидов . Синтез фосфатидилхолинов , фосфатидилэтаноламинов и фосфатидилсеринов . Н ачальные этапы синтеза глицерофосфолипидов и жиров происходят одинаково до образования фосфатидной кислоты. Фосфатидная кислота может синтезироваться двумя разными путями: через глицеральдегид-3-фосфат и через дигидроксиацетонфосфат . На следующем этапе фосфатидаза отщепляет от фосфатидной кислоты фосфатный остаток, в результате чего образуется диацилглицерол . Дальнейшие превращения диацилглицерола также могут идти разными путями. Один из вариантов - образование активной формы "полярной головки" фосфолипида : холин, серии или этаноламин превращаются в ЦДФ-холин , ЦДФ-серин или ЦДФ-этаноламин . Образовавшийся ЦДФ-холин - донор холина для синтеза молекул фосфатидилхолинов . Далее диацилглицерол взаимодействует с ЦМФ-производными , при этом выделяется ЦМФ, и образуется фосфатидилхолин . Фосфатидилсерин может превращаться в фосфа-тидилэтаноламин путём декарбоксилирования . Фосфатидилэтаноламин может превращаться в фосфатидилсерин путём обмена этаноламина на серии. Дипальмитоилфосфатидилхолин основной компонент сурфактанта легких . Сурфактант - внеклеточный липидный слой с небольшим количеством гидрофобных белков, выстилающий поверхность лёгочных альвеол и предотвращающий слипание стенок альвеол во время выдоха. Сурфактант уменьшает поверхностное натяжение жидкости, выстилающей поверхность альвеол, и предотвращает слипание стенок альвеол во время выдоха. Синтез дипальмитоилфосфатидилхолина (лецитина) в пневмоцитах II типа происходит в процессе эмбрионального развития и резко увеличивается в период от 32 до 36 нед беременности. Важным показателем нормального формирования сурфактанта служит соотношение фосфатидилхолин / сфингомиелин >4. Это соотношение можно определять, исследуя состав амниотической жидкости. Другой путь превращений диацилглицерола приводит к образованию фосфатидилинозитола и кардиолипина . Фосфатидилинозитол далее может фосфорилироваться с образованием фосфолипида , располагающегося в наружной мембране клеток и участвующего в передаче гормональных сигналов внутрь клетки. Кардиолипин находится, главным образом, во внутренней мембране митохондрий и в небольшом количестве в сурфактанте лёгких. Различные типы фосфолипаз , локализованных в клеточных мембранах или в лизосомах, катализируют гидролиз глицерофосфолипидов . Синтез сфинголипидов начинается с образования церамида . Серин конденсируется с пальмитоил-КоА . После окисления FAD-зависимой дегидрогеназой образуется церамид . Церамид служит предшественником в синтезе большой группы сфинголипидов : сфингомиелинов , не содержащих углеводов, и гликосфинголипидов . Соединение фосфорилхолина с церамидом сфингомиелин-синтазой приводит к образованию сфингомие-лина . Донорами углеводных компонентов служат активированные сахара: УДФ-галактоза и УДФ-глюкоза . В распаде сфингомиелинов участвуют 2 фермента - сфингомиелиназа , отщепляющая фосфорилхолин , и церамидаза , продуктами действия которой являются сфингозин и жирная кислота. Катаболизм гликосфинголипидов начинается с перемещения их с поверхности клетки в цитоплазму по механизму эндоцитоза . В результате молекулы, расположенные на поверхности мембран, оказываются в эндоцитозных везикулах в цитоплазме и сливаются с лизосомами. В лизосомах находятся все ферменты, необходимые для гидролиза сложных молекул гликосфинголипидов : α- и β- галактозидазы, β-глюкозидазы, нейраминидаза ( сиалидаза ) и церамидаза . В результате последовательных реакций гидролиза сложные молекулы гликосфинголипидов распадаются до мономеров: глюкозы, галактозы, жирной кислоты, сфингозина и других метаболитов. Синтез триглицеридов в стенке кишечника может происходить из моноглицерида (из 2-моноацилглицерола) и двух молекул активных жирных кислот (остатки жирных кислот в комплексе с ацилпереносящим энзимом – S-КоА), или из глицерина и трех молекул активных жирных кислот с участием АТФ, что более характерно для процессов в печени и жировой ткани. При голодании увеличивается секреция глюкагона, при физической работе - адреналина. Эти гормоны, действуя через аденилатциклазную систему, стимулируют мобилизацию жиров. Нарушения липидного обмена могут быть как первичными, так и вторичными, т.е. вызванными патологией эндокринной системы или компенсаторные при различных заболеваниях.Нарушения переваривания и всасывания липидов сопровождаются развитием стеатореи (повышенное содержание липидов и жирных кислот в кале) и обусловливаются одной из следующих причин:1.Дефицит панкреатической липазы, связанный с заболеваниями поджелудочной железы;2.Дефицит желчи в кишечнике, обсуловленный заболеваниями печени или желчевыводящих путей;3.Угнетение ферментных систем ресинтеза триглицеридов в стенке кишечника при его заболеваниях. Ожирением считают состояние, когда масса тела превышает 20% от "идеальной" для данного индивидуума. Первичное ожирение развивается в результате алиментарного дисбаланса - избыточной калорийности питания по сравнению с расходами энергии. Суточные потребности организма в энергии складываются из: основного обмена - энергии, необходимой для поддержания жизни; основной обмен измеряют по поглощению кислорода или выделению тепла человеком в состоянии покоя утром, после 12-часового перерыва в еде; энергии, необходимой для физической активности. Вторичное ожирение - ожирение, развивающееся в результате какого-либо основного заболевания, чаще всего эндокринного. Например, к развитию ожирения приводят гипотиреоз, синдром Иценко-Кушинга, гипогонадизм и многие другие заболевания.

Соседние файлы в предмете Биохимия