
- •Технологические процессы изготовления сбис
- •Тенденции развития интегральных микросхем и их моделирование
- •Разработка завершается:
- •2. Окисление
- •2.1. Диэлектрические плёнки в технологии имс
- •2.2. Способы получения диэлектрических плёнок
- •2.3. Модель термического окисления Дила–Гроува
- •2.4. Влияние технологических факторов на скорость термического окисления кремния
- •2.5. Перераспределение легирующих примесей при термическом окислении кремния
- •В системе Si/SiO2
- •2.6. Уравнение диффузии при термическом окислении
- •2.7. Равновесная и неравновесная сегрегация примесей
- •2.8. Влияние термического окисления на скорость диффузии
- •2.9. Диффузия в неравновесных условиях по собственным точечным дефектам
- •3. Ионная имплантация
- •3.1. Ионная имплантация в технологии имс
- •3.2. Распределение энергетических потерь и ионов по глубине
- •3.3. Каналирование ионов
- •3.4. Ионная имплантация через маску
- •3.5. Распределение примеси в двухслойной мишени
- •3.6. Распределение концентрации при локальной ии
- •3.7. Ионное распыление
- •3.8. Радиационные дефекты и аморфизация
- •3.9. Электрическая активация примеси
- •3.10. Диффузия примеси из имплантированного слоя
- •3.11. Образование протяженных структурных дефектов
- •3.12. Качество имплантированных p–n-переходов и транзисторов
- •4. Эпитаксия
- •4.1. Эпитаксия в технологии имс
- •4.2. Эпитаксия кремния
- •4.3. Легирование эпитаксиальных слоёв
- •4.4. Автолегирование
- •4.5. Распределение примесей при эпитаксии
- •4.6. Деформации и напряжения в эпитаксиальных слоях
- •4.7. Дефекты эпитаксиального слоя
- •5. Диффузия
- •5.1. Диффузия в технологии имс
- •5.2. Технологические методы проведения диффузии
- •5.3. Характеристики основных легирующих примесей
- •5.4. Уравнение диффузии и его общие решения
- •5.5. Частные решения уравнения диффузии
- •5.6. Концентрационная зависимость коэффициента диффузии
- •5.7. Влияние дефектов на диффузию
- •Список литературы
- •Оглавление
- •Технологические процессы изготовления сбис
- •197376, С.-Петербург, ул. Проф. Попова, 5
5.7. Влияние дефектов на диффузию
Диффузия
основных легирующих примесей при
поверхностных невысоких концентрациях
(C
< 1019
см–3)
обычно не сопровождается образованием
каких-либо структурных дефектов. При
проведении диффузии с высокой поверхностной
концентрацией (C
> 1019
см–3)
и большим количеством в слое (Q
> 1016
см–2)
примеси, создающей деформацию (B,
P,
Sb
в Si
(см. 4.6)), в кристаллическую решётку
полупроводника вводятся напряжения.
При превышении предела пластического
течения в диффузионном слое на глубине
1/3–1/2 от глубины залегания p–n-перехода
образуeтся
плоская сетка дислокаций несоответствия
(ДН), параллельная поверхности. Вид и
плотность ДН зависят от поверхностной
концентрации примеси, а также от
ориентации поверхности полупроводниковой
пластины (рис. 5.8).
При
проведении локальной диффузии плотность
дислокаций несоответствия зависит от
ширины окна (рис. 5.9). В узких окнах шириной
менее 10 мкм (а)
образование дислокаций несоответствия
затруднено по сравнению с широкими
окнами (б).
При проведении второй стадии диффузии в окислительной среде и большом количестве примеси в диффузионном слое на кремнии ориентации (111) или (110) могут образовываться внеконтурные дислокации (см. также 3.11). Для примесей, имеющих коэффициент сегрегации ms >> 1 в системе Si–SiO2 (P, As, Sb), в результате их оттеснения фронтом растущего диоксида может быть превышен предел растворимости. Тогда в приповерхностном слое кремния образуются преципитаты (выделения) легирующей примеси, например, SiP при диффузии фосфора.
Дислокации
несоответствия оказывают влияние на
диффузию примеси фосфора с высокой
концентрацией в кремнии, замедляя её
диффузию в хвостовой части профиля
(рис. 5.10). С увеличением плотности
дислокаций происходит всё большее
подавление хвоста в области малых
концентраций. Замедление диффузии
связано со стоком на дислокации избыточных
СМА, являющихся причиной уско-ренной
диффузии фосфора в этой области.
Д
ислокации,
наклонные к фронту диффузии (ростовые
дислокации, линии скольжения) могут
служить путями ускоренной диффузии
примесей, приводя к образованию
диффузионных трубок в транзисторах.
Ускорение диффузии примесей вдоль
дислокаций объясняется наличием в
области ядра дислокации оборванных
связей и напряжений.
В заключение отметим, что все описанные выше явления, происходящие при проведении высокотемпературных технологических операций – термическом окислении, эпитаксии, ионном и диффузионном легировании, – необходимо учитывать при моделировании, проектировании и изготовлении СБИС, поскольку они оказывают влияние на качество и надёжность изделий, в которых СБИС являются элементной базой.
Список литературы
Технология СБИС. В 2 кн. / Под ред. С. Зи. М.: Мир, 1986.
Аброян И. А., Андронов А. Н., Титов А. И. Физические основы электронной и ионной технологии. М.: Высш. шк., 1984.
Риссел Х., Руге И. Ионная имплантация. М.: Наука, 1983.
Александров О. В., Дусь А.И. Модель термического окисления кремния на фронте объёмной реакции // ФТП. 2008. Т. 42, № 11. С. 1400.
Александров О. В., Дусь А.И. Эффект ориентации поверхности в модели объёмного окисления кремния // ФТП. 2009. Т. 43, № 10. С. 1413.
Александров О. В., Дусь А.И. Модель термического окисления кремния с релаксацией коэффициента диффузии // Известия вузов. Электроника. 2009, № 4(78). С. 9–18.
Александров О. В., Афонин Н. Н. Неравновесная сегрегация фосфора в системе диоксид кремния – кремний // ФТП. 1998. Т. 32, С. 19.
Александров О. В., Афонин Н. Н. Неравновесная сегрегация бора при окислении кремния в парах воды под давлением // КСиМФГ. 2000. Т. 2, № 2. С. 1–5.
Александров О. В., Афонин Н. Н. Особенности сегрегационного перераспределения фосфора при термическом окислении сильно легированных слоёв кремния // ФТП. 2005. Т. 39, № 6. С. 647–654.
Александров О.В. Модель ослабления диффузии, ускоренной окислением, в сильно легированных слоях кремния // ФТП. 2003. Т. 37, № 6. С. 649–656.
Александров О. В., Федоров Д. С. Моделирование диффузии легирующих примесей при БТО имплантированных слоёв кремния // Изв. СПбГЭТУ. Сер. Электроника. 2002. Вып. 1. С. 16–20.
Александров О. В., Прохоров В. И., Шевченко Б. Н. Отжиг имплантированных фосфором кремниевых планарных приборов // Электрон. техника. Сер. 2. 1981. Вып. 1(144). С. 51–55.
Александров О. В. Электрические свойства дислокаций в кремниевых биполярных структурах // Электрон. техника. Сер. 3. 1991. Вып. 5(144). С. 16–19.
Александров О. В., Матханова И. П. Влияние ориентации на диффузию фосфора в кремний // Изв. АН СССР. Неорг. материалы. 1983. Т. 19, № 4. С. 517–520.
Александров О. В., Матханова И. П. Влияние ширины окна на локальную диффузию фосфора в кремний // Электрон. техника. Сер. 2. 1979. Вып. 7(133). С. 3–12.
Александров О. В. Влияние стоков собственных точечных дефектов на диффузию фосфора в кремнии // ФТП. 2002. Т. 36, С. 1345.
Александров О. В. Моделирование концентрационной зависи-мости диффузии бора в кремнии // ФТП. 2004. Т. 38, С. 270-273.