
Metabolicheskaia_biokhimiia
.pdf
61
оставшийся комплекс легко присоединяет 50S субчастицу, образуя транслирующую, т.е. функционально активную, 70S рибосому. В процессе этих перестроек рибосомы освобождают остальные белковые факторы инициации и продукты гидролиза ГТФ (ГДФ и неорганический фосфат), энергия которого расходуется, по-видимому, на формирование инициирующего 70S комплекса рибосомы. В этом комплексе формилметионил-тРНК оказывается прикрепленной к пептидилсвязывающему центру рибосомы. В гидролизе ГТФ принимает участие IF-2. У образовавшейся активной, полностью сформировавшейся 70S рибосомы, содержащей формилметио- нил-тРНК, оказывается свободным аминоацильный центр, который может
С этого момента начинается II этап синтеза белка –элонгация. Элонгация трансляции. Процесс элонгации полипептидной цепи у Е. coli начинается с образования первой пептидной связи и непосредственно, точнее топографически, связан с большой субчастицей (50S) рибосомы, содержащей два центра для связывания тРНК: один из них называется аминоацильным (А), другой –пептидильным (П). Смотри рисунок 12.
Рисунок 12. – 50S субчастица рибосомы с двумя центрами связывания тРНК
В процессе элонгации у Е. coli также участвует три белковых фактора – элонгационные факторы трансляции, сокращенно обозначаемые Tu, Ts и G: EF-Tu (мол. масса 43000), EF-Ts (мол. масса 35000) и EF-G (мол. масса
80000). У эукариот также открыты три таких фактора, названных эукариотическими элонгационными факторами трансляции и обозначаемых соответственно eEF-1α(мол. масса 53000), eEF-1α в (мол. масса 30000) и eEF- 2; почти все они получены в чистом виде, для ряда из них установлена первичная структура. Процесс элонгации принято делить на 3 стадии: узнавание кодона и связывание аминоацил-тРНК, образование пептидной связи и транслокация. На I стадии в соответствии с природой кодона мРНК в свободный А-участок рибосомы доставляется аминоацил-тРНК при участии фактора элонгации Tu. Этот процесс требует затраты энергии и сопряжен с гидролизом ГТФ и образованием прочно связанного комплекса Тu–ГТФ. Образовавшийся комплекс подвергается диссоциации только в присутствии второго фактора элонгации Ts, при котором освободившийся фактор Tu может вновь, соединяясь с молекулой ГТФ, принять участие в доставке аа-тРНК в рибосому. Таким образом, в транслирующей 70S рибосоме в пептидильном центре располагается формилметионил-тРНК, а в А- центре – аминоацил-тРНК (первая аминокислота после метионина). С
61

62
этого момента начинается II стадия элонгации – образование первой пептидной связи. Для этого в рибосоме осуществляется ферментативная реакция транспептидирования между формилметионил-тРНК в П-центре и новой аа-тРНК в А-центре. В процессе этой реакции остаток формилметионина переносится на свободную NH2-группу аа-тРНК и замыкается первая пептидная связь в будущей полипептидной цепи. Параллельно из пептидильного центра освобождается тРНКфМет в цитозоль. Фермент, катализирующий реакцию транспептирования, получил название пептидилтрансферазы , на рисунке 13; он, вероятнее всего, является составной частью белков 50S субчастицы. Таким образом, в процессе транспептидазной реакции в А-центре образуется дипептидил-тРНК, а П- центр остается свободным («вакантным»). На III стадии процесса элонгации необходимо иметь свободный аминоацильный центр для присоединения следующей аа-тРНК. Для этого благодаря процессу транслокации образовавшийся фрагмент дипептидил-тРНК переносится от аминоацильного на пептидильный центр.
Рисунок 13. – Перенос фМет-тРНК между двумя центрами (П и А) на большой 50S субчастице рибосомы
Достигается транслокация благодаря передвижению рибосомы относительно мРНК при участии фермента транслоказы (функцию ее выполняет фактор элонгации G у Е. coli и eEF-2 у эукариот) за счет использования энергии распада еще одной молекулы ГТФ. В результате транслокации дипептидил-тРНК занимает место в пептидильном центре рибосомы, а аминоацильный центр освобождается для нового цикла узнавания и может присоединить новую следующую аа-тРНК, соответствующую кодону мРНК. В процессе транслокации рибосома перемещается вдоль мРНК по направлению к ее 3'-концу на расстояние в один кодон, т.е. точно на один триплет. На рисунке 14 видно, что рибосома вступает в следующий цикл – происходит присоединение третьего аминокислотного остатка и т.д. Таким образом, на стадии элонгации происходит последовательное наращивание полипептидной цепи по одной аминокислоте в строгом соответствии с последовательностью триплетов (кодонов) в молекуле мРНК. Существенным является выяснение вопроса о количестве энергии, необходимой для синтеза одной пептидной связи при биосинтезе белка. Как было отмечено, при активировании аминокислоты еще до стадии инициации, т.е. при формировании аа-тРНК, расходуется энергия
62

63
распада АТФ на АМФ и пирофосфат, что приблизительно эквивалентно гидролизу 2 молекул АТФ до 2 молекул АДФ, поскольку пирофосфат подвергается распаду на 2 молекулы неорганического фосфата.
Рисунок 14. – Процесс элонгации полипептидной цепи
Для включения аминоацил-тРНК в аминоацильный центр используется энергия гидролиза молекулы ГТФ на ГДФ и неорганический фосфат. Наконец, транслокация транслирующей 70S рибосомы также нуждается в энергии гидролиза еще одной молекулы ГТФ. Таким образом, энергетические потребности синтеза каждой пептидной связи эквивалентны энергии гидролиза 2 молекул АТФ и 2 молекул ГТФ (т.е. гидролиз четырех макроэргических фосфатных связей) до соответствующих нуклеозиддифосфатов. Легко представить, насколько велики энерготраты каждой клетки при синтезе не только одной молекулы белка, а множества молекул самых разнообразных белков в единицу времени.
Терминация трансляции. На IV стадии биосинтеза белка завершается синтез полипептидной цепи в 70S рибосоме при участии трех белковых факторов терминации (рилизинг-факторов). Эти белки обозначаются RF-1
(мол. масса 47000), RF-2 (мол. масса 35000–8000) и RF-3 (мол. масса 46000) у
прокариот. В клетках животных открыт одинединственный белок с аналогичным свойством –рилизинг-фактор R (eRF, мол. масса 56000–05000). У Е. coli RF-1 наделен свойством узнавания в молекуле мРНК терминирующих кодонов УАГ и УАА, a RF-2 –соответственно УГА и УАА. Эукариотический рилизинг-фактор eRF узнает все три терминирующих кодона (нонсенс-кодоны) и индуцирует освобождение синтезированного полипептида опосредованно через пептидилтрансферазу. После того как терминирующий кодон мРНК занимает свое место в аминоацильном центре
63

64
рибосомы, к нему присоединяется не тРНК, поскольку отсутствуют соответствующие антикодоны тРНК, узнающие этот терминальный сигнал, а один из белковых факторов терминации и блокируется далнейшая элонгация цепи. Считают, что терминирующие кодоны и белковые факторы индуцируют изменение специфичности пептидилтрансферазной активности таким образом, что она катализирует перенос растущей пептидной цепи, скорее, к молекуле воды, вызывая гидролиз, чем к аминогруппе аминокислоты. Следствием этого являются отделение белковой молекулы от рибосомы и освобождение молекул тРНК и мРНК (последняя подвергается распаду до свободных рибонуклеотидов). Одновременно 70S рибосома диссоциирует на две субчастицы –30S и 50S, которые поступают в свободный пул и могут вновь использоваться для реассоциации новой рибосомы. Схематически этот процесс представлен на рисунке 15. ГТФ в терминации трансляции у Е. coli рассматривается в качестве аллостерического регулятора, а у эукариотов ГТФ, вероятнее всего, распадается на ГДФ и Pi.
Рисунок 15. - Процесс терминации синтеза белка
Рисунок 16.– Схематическое изображение роли разных типов РНК в синтезе белка (по Уотсону)
64

65
Рисунок 17 – Схематическое изображение организации бактериальной полирибосомы (полисомы) и движения рибосом вдоль мРНК
Вобщей форме зависимость между репликацией ДНК, транскрипцией
итрансляцией мРНК представлена на рисунке 16. Видно, что одна матричная мРНК транслируется не одной рибосомой, а одновременно многими рибосомами, расположенными близко друг к другу. Подобные скопления рибосом на мРНК получили название полирибосом, или полисом. Они значительно повышают эффективность использования мРНК, т.е. ускоряют синтез белка. Рибосомы движутся в направлении 5' – 3' вдоль цепи мРНК, причем каждая рибосома работает самостоятельно, синтезируя отдельный белок. Полисома, таким образом, позволяет обеспечить высокую скорость трансляции единственной мРНК, смотри рисунок 17.
Помимо использования белков для нужд самой клетки, многие так называемые экспортируемые (секретируемые) белки, которые функционируют вне клетки, подвергаются переносу через клеточную мембрану при помощи особых низкомолекулярных пептидов (от 15 до 30 аминокислотных остатков), получивших название лидирующих, или сигнальных, пептидов. Особенность их состава –преимущественное содержание гидрофобных радикалов, что позволяет им легко проникать через бислойную липидную мембрану или встраиваться в мембрану. Эти сигнальные последовательности в рибосомах образуются первыми с N-конца при синтезе белка по программе сигнальных кодонов, расположенных сразу после инициаторного кодона, и легко узнаются рецепторными участками мембраны эндоплазматической сети. При этом образуется комплекс между мРНК, рибосомой и мембранными рецепторными белками, формируя своеобразный канал в мембране, через который сигнальный пептид проникает внутрь цистерны эндоплазматического ретикулума, увлекая и протаскивая за собой синтезируемую и растущую молекулу секреторного белка. В процессе прохождения или после проникновения полипептида в цистерны N-концевая сигнальная последовательность отщепляется под действием специфической лидирующей (сигнальной) пептидазы, а зрелый белок через пластинчатый комплекс (аппарат Гольджи) покидает клетку в форме секреторного пузырька. Следует указать на возможность активного участия в транспорте белков и других полимерных молекул через мембраны, помимо сигнальных пептидов, также особых белков –поринов, химическая природа и механизм действия которых выяснены пока недостаточно.
65
66
СИНТЕЗ МИТОХОНДРИАЛЬНЫХ БЕЛКОВ В митохондриях клеток высших организмов содержится до 2%
клеточной ДНК, отличающейся от ДНК ядра по массе и структуре. Митохондрии имеют весь аппарат, включая рибосомы, тРНК и мРНК, необходимый для синтеза определенных белков. Синтезируемые в митохондриях белки являются нерастворимыми белками и участвуют в основном в организации структуры этих же органелл, в то время как местом синтеза растворимых митохондриальных белков являются рибосомы цитоплазмы, откуда они затем транспортируются в митохондрии. Рибосомы в митохондриях имеют меньший размер, чем 80S рибосомы в цитоплазме. Интересно отметить, что в качестве инициирующей аминокислоты при синтезе белка в митохондриях эукариот может участвовать N-формил- метионин, а не свободный метионин, как в цитоплазме. Это обстоятельство свидетельствует о том, что митохондриальный синтез белка по своему механизму, очевидно, близок к синтезу белка у прокариот.
ПОСТСИНТЕТИЧЕСКАЯ МОДИФИКАЦИЯ БЕЛКОВ
На V, последней, стадии синтеза белка происходят формирование третичной структуры и процессинг молекулы полипептида. Синтезированная на рибосоме в строгом соответствии с генетической программой линейная одномерная полипептидная молекула уже содержит определенную информацию. Такая молекула называется конформационной, т.е. она претерпевает не хаотичные структурные изменения, а подвергается превращению (процессингу) в строго определенное трехмерное тело, которое само наделено информацией, но уже функциональной. Указанное положение справедливо для молекул белков, выполняющих в основном структурные функции, но не для биологически неактивных молекул предшественников белков, функциональная активность которых проявляется позже в результате разнообразных превращений, объединенных понятием «постсинтетическая, или посттрансляционная, модификация». Подобные модификации структуры полипептида начинаются или сразу после трансляции, или еще до окончания формирования третичной структуры белковой молекулы. Помимо указанного процесса протеолитического удаления сигнального пептида, во многих белках отщепляется начальный N-концевой метионин. Оказалось, что в прокариотических клетках имеются особые ферменты, модифицирующие N- концевые остатки, в частности деформилаза, катализирующая отщепление формильной группы от N-концевого метионина, а также аминопептидазы, катализирующие отщепление не только N-кон- цевого формилметионина (или метионина у эукариот), но, возможно, и других остатков аминокислот с N-конца пептида. Аналогичному так называемому ограниченному постсинтетическому протеолизу подвергаются некоторые пробелки, или проферменты (например, трипсиноген, химотрипсиноген и др.), и предшественники гормонов (например, препроинсулин, пре-βлипотропин и др.). В ряде случаев наблюдается и С-концевая модификация синтезированного белка. Как известно, участок ДНК, несущий информацию о синтезе индивидуального белка, называется геном, а участок,
66
67
контролирующий синтез единственной полипептидной цепи и ответственный за него,– цистроном. Следовательно, если белок состоит из нескольких (более одного) полипептидов, то естественно предположить, что в синтезе такого белка должны участвовать несколько (более одного) цистронов. Это не всегда соответствует действительности, особенно если полипептидные цепи идентичны (например, α2- и β2-цепи гемоглобина). Если, например, пептидные цепи какой-либо одной белковой молекулы являются неидентичными, то это не всегда означает, что они синтезируются как результат действия разных цистронов. Подобный белок может синтезироваться в виде единственной полипептидной цепи с последующими протеолитическими разрывами в одном или нескольких местах и отщеплением неактивных участков. Типичным примером подобной модификации является гормон инсулин, синтезирующийся в виде единого полипептида препроинсулина, который после ферментативного гидролиза превращается сначала в неактивный предшественник проинсулин, а затем в активный гормон инсулин, содержащий две разных размеров и последовательности полипептидные цепи. Следует подчеркнуть, однако, что значительно больший удельный вес имеет посттрансляционная химическая модификация белков, затрагивающая радикалы отдельных аминокислот. Одной из таких существенных модификаций является ковалентное присоединение простетической группы к молекуле белка. Например, только после присоединения пиридоксальфосфата к εаминогруппе остатка лизина белковой части – апоферменту –образуется биологически активная трехмерная конфигурация аминотрансфераз, катализирующих реакции трансаминирования аминокислот. Некоторые белки подвергаются гликозилированию, присоединяя олигосахаридные остатки (образование гликопротеинов), и обеспечивают тем самым доставку белков к клеткаммишеням. Широко представлены химические модификации белков в результате реакции гидроксилирования остатков пролина, лизина (при формировании молекул коллагена), реакции метилирования (остатки лизина, глутамата), ацетилирования ряда N-концевых аминокислот, реакции карбоксилирования остатков глутамата и аспартата ряда белков (добавление экстракарбоксильной группы). В частности, протромбин (белок свертывающей системы крови) содержит ряд γкарбоксиглутаматных остатков на N-конце, в образовании которых активное участие принимает витамин К, содержащий фермент. Предполагают, что γкарбоксиглутаматные остатки принимают участие в связывании ионов Са2+, необходимых для инициации свертывания крови. Одной из широко распространенных химических постсинтетических модификаций является фосфорилирование остатков серина и треонина, например, в молекуле гистоновых и негистоновых белков, а также казеина молока. Фосфорилированиедефосфорилирование ОН-группы серина абсолютно необходимо для множества ферментов, например для активности гликоген-фосфорилазы и гликоген-синтазы. Фосфорилирование некоторых остатков тирозина в молекуле белка в настоящее время рассматривается как один из возможных и
67
68
специфических этапов формирования онкобелков при малигнизации нормальных клеток. Хорошо известны также реакции окисления двух остатков цистеина и образование внутри- и межцепочечных дисульфидных связей при формировании третичной структуры (фолдинг). Этим обеспечивается не только защита от внешних денатурирующих агентов, но и образование нативной конформации и проявление биологической активности. Менее известны реакции фарнезилирования остатков цистеина ряда белков: белка G, группы белков ядерного матрикса, а также белковонкогенов ras и протоонкогенов; источником изопренильных групп является фарнезил-пирофосфат (промежуточный продукт при синтезе холестерина). Получены доказательства, что блокирование реакции фарнезилирования, вызванное специфическими препаратами (ингибиторами), приводит к потере канцерогенной активности онкогена ras. Эти результаты могут служить основой для разработки эффективных средств борьбы с опухолевыми заболеваниями человека, основанными на ингибировании посттрансляционной модификации белков вообще или онкобелков в частности. Следует отметить, что, хотя биосинтез белка, представляющий сложный многоступенчатый процесс, подробно описан во многих обзорах и монографиях, наши знания о структурно-функциональных взаимоотношениях многих его этапов все еще недостаточны. Действительно, выделены и охарактеризованы рибосомы (более полно у Е. coli), состоящие из множества индивидуальных белков и 3 типов молекул РНК; более того, выяснена аминокислотная последовательность всех 55 белковых молекул, первичная и вторичная структура 3 типов РНК, интенсивно изучается трехмерная структура отдельных белков рибосом прокариот. Тем не менее многие существенные детали механизма белкового синтеза неясны. Например, недостаточно известно, какие участки или составные части рибосом ответственны за инициацию, элонгацию и терминацию белкового синтеза; каков молекулярный механизм процессов транслокации, пептидилтрансферазной реакции; каковы тонкие взаимодействия рибосом с белковыми факторами, мРНК, тРНК и антибиотиками. Потребуется еще немало усилий для определения полной молекулярной архитектуры рибосом и отдельных ее субчастиц, а также для выяснения и получения точных данных об их третичной структуре, форме и размерах, достаточных для раскрытия на молекулярном уровне функций рибосомы в сложном процессе синтеза белка. Внерибосомный механизм синтеза пептидов. Накопленные данные, действительно, свидетельствуют о том, что матричный механизм синтеза лежит в основе биосинтеза почти всех белков живых организмов. Тем не менее синтез ряда низкомолекулярных (коротких) пептидов в биологических системах может осуществляться не только без участия нуклеиновых кислот, в частности без матричной мРНК, но даже в отсутствие рибосом. Еще на X Международном биохимическом конгрессе в Гамбурге в 1976 г. Ф. Липман (США) и К. Курахаси (Япония) представили экспериментальные доказательства синтеза двух природных циклических пептидных антибиотиков – грамицидина S и тироцидина как в цельных
68

69
экстрактах, полученных из Bacillus brevis, так и в изолированных из экстрактов белковых фракциях. В частности, выделенные из экстрактов В. brevis и очищенные два белковых препарата обеспечивали точность сборки циклического полипептида – грамицидина S, состоящего из 10 аминокислотных остатков, расположенных в строгой последовательности. Очищенные белковые фракции (с мол. массами 100000 и 180000) требовали присутствия только свободных аминокислот, АТФ и ионов Mg2+ для синтеза этого циклического декапептида (О- фенилаланилпролилвалилорнитиллейцин)2:
Показано, что именно легкая белковая фракция (мол. масса 100000) обеспечивает рацемизирование и включение D-фенилаланина в первую полипептидную цепь, а тяжелая фракция (мол. масса 180000) –включение 4 остальных L-аминокислот; оба фермента принимают участие также и в образовании пептидных связей. Аналогично синтезируется такой же пентапептид на расположенном рядом мультиферментном комплексе, затем оба пентапептида соединяются по типу «голова» к «хвосту» с замыканием цепи и образованием циклического декапептида. В механизме синтеза предполагается предварительное образование аминоациладенилатов (при участии этих же ферментов), из которых остатки аминокислот затем переносятся на SH-группы обоих ферментов. При этом образуются активированные промежуточные тиоэфиры, подобные тиоэфирам при синтезе высших жирных кислот. В структуре первого (легкого) фермента открыт ковалентно связанный остаток фосфопантотеина, поэтому предполагают участие его тиоловой группы в переносе растущей пептидной цепи с одного участка фермента на другой. Аналогичный механизм синтеза доказан также для антибиотика тироцидина (декапептид) и для 13-членного циклического пептида –антибиотика микобациллина. Таким образом, природа (условно в лице бактериальной клетки), очевидно, не утратила полностью существовавшего до матричного, рибосомного, пути атавистического механизма синтеза белковых тел и пользуется для этого весьма примитивными, но достаточно эффективными приемами.
РЕГУЛЯЦИЯ СИНТЕЗА БЕЛКА Основным условием существования любых живых организмов
является наличие тонкой, гибкой, согласованно действующей системы регуляции, в которой все элементы тесно связаны друг с другом. В белковом синтезе не только количественный и качественный состав белков, но и время синтеза имеют большое значение. От этого зависит приспособление микроорганизмов к условиям окружающей питательной среды как биологической необходимости или приспособление сложного многоклеточного организма к физиологическим потребностям при изменении внутренних и внешних условий. Клетки живых организмов
69
70
обладают способностью синтезировать огромное количество разнообразных белков. Однако они никогда не синтезируют все белки. Количество и разнообразие белков, в частности ферментов, определяются степенью их участия в метаболизме. Более того, интенсивность обмена регулируется скоростью синтеза белка и параллельно контролируется аллостерическим путем. Таким образом, синтез белка регулируется внешними и внутренними факторами и условиями, которые диктуют клетке синтез такого количества белка и такого набора белков, которые необходимы для выполнения физиологических функций. Все это свидетельствует о весьма сложном, тонком и целесообразном механизме регуляции синтеза белка в клетке. Общую теорию регуляции синтеза белка разработали французские ученые, лауреаты Нобелевской премии Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к «выключению» или «включению» генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию на синтез специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизмы регуляции синтеза белка, вероятнее всего, являются более сложными. У бактерий доказана индукция ферментов (синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления – индукция и репрессия
– взаимосвязаны. Согласно теории Ф. Жакоба и Ж. Моно, в биосинтезе белка у бактерий участвуют по крайней мере 3 типа генов: структурные гены, генрегулятор и ген-оператор. Структурные гены определяют первичную структуру синтезируемого белка. Именно эти гены в цепи ДНК являются основой для биосинтеза мРНК, которая затем поступает в рибосому и, как было указано, служит матрицей для биосинтеза белка. Регуляция синтеза белка путем индукции представлена на рисунок 18. Синтез мРНК на структурных генах молекулы ДНК непосредственно контролируется определенным участком, называемым геном-операто- ром. Он служит как бы пусковым механизмом для функционирования структурных генов. Геноператор локализован на крайнем отрезке структурного гена или структурных генов, регулируемых им. «Считывание» генетического кода, т.е. формирование мРНК, начинается с промотора – участка ДНК, расположенного рядом с геном-оператором и являющегося точкой инициации для синтеза мРНК, и распространяется последовательно вдоль оператора и структурных генов. Синтезированную молекулу мРНК, кодирующую синтез нескольких разных белков, принято называть полигенным (полицистронным) транскриптом. Координированный одним оператором одиночный ген или группа структурных генов образует оперон. В свою очередь деятельность оперона находится под контролирующим влиянием другого участка цепи ДНК, получившего название гена-регу-
70