
Metabolicheskaia_biokhimiia
.pdf41
незаменимости отдельных аминокислот. Для цыплят, например, глицин оказался незаменимым фактором роста. Для оценки биологической ценности пищевого белка важное значение имеет знание его аминокислотного состава. Так, скармливание крысам казеина (белок молока) и выделенного из кукурузы белка зеина, который не содержит лизина и практически триптофана, показало, что при получении с пищей казеина рост животных не нарушался. Замена казеина зеином приводила к постепенному отставанию в росте и снижению массы тела животных. Добавление к зеину только триптофана предотвращало снижение массы тела, но не увеличивало рост; при добавлении к рациону еще и лизина масса тела прогрессивно нарастала. Таким образом, скармливание выделенного из кукурузного зерна белка зеина, не содержащего двух незаменимых аминокислот, приводит к остановке роста, уменьшению массы тела животных и развитию отрицательного азотистого баланса. Человек и животные питаются не искусственно выделенными, а натуральными белками, входящими в состав смешанной пищи, в которой обычно содержится весь набор незаменимых аминокислот. Так, цельное кукурузное зерно содержит 2,5% лизина, 0,7% триптофана, в то время как зеин не содержит лизина вообще, а триптофана в нем всего 0,1%. Этот пример лишний раз свидетельствует о том, что в природе неполноценных белков почти не существует и что следует, очевидно, лишь различать биологически более ценные и менее ценные (в питательном отношении) белки. Биологическая ценность пищевого белка целиком зависит от степени его усвоения организмом, что в свою очередь определяется соответствием между аминокислотным составом потребляемого белка и аминокислотным составом белков организма. Такой пищевой белок лучше используется организмом для синтеза белков тканей. Для человека, например, белки мяса, молока, яиц биологически более ценны, поскольку их аминокислотный состав ближе к аминокислотному составу органов и тканей человека. Однако это не исключает приема растительных белков, в которых содержится необходимый набор аминокислот, но в другом соотношении. Поэтому для обеспечения биосинтеза необходимого количества эндогенных белков человеку потребуется значительно больше растительных белков, чем животных. Таким образом, для нормального роста и гармоничного развития организма человека исключительно большое значение имеют составление и подбор пищевых продуктов, содержащих оптимальный аминокислотный состав и обеспечивающих физиологически полноценное питание для разных групп населения с учетом не только возраста и пола, но и различных климатических условий, характера труда, сезона года и т.д.
Под термином «резервные белки» понимают не особые отложения белков, а легкомобилизуемые при необходимости тканевые белки, которые после гидролиза под действием специфических протеиназ служат поставщиками аминокислот, необходимых для синтеза ферментов, гормонов и др. Опыты на животных показали, что при голодании наблюдается неравномерное изменение массы отдельных органов и тканей; в значительно большей степени снижается масса печени. Многочисленные наблюдения
41
42
больных в клиниках также свидетельствуют, что при голодании и тяжелых инфекционных заболеваниях, когда наблюдается интенсивный распад органов, в первую очередь снижается масса печени и мышц и существенно не изменяется масса мозга и сердца. Организм за счет распада белков печени и мышц обеспечивает нормальную деятельность жизненно важных органов. На основании этих данных принято считать, что белки плазмы крови, печени и мышц могут служить в качестве резервных , хотя эти резервы по своему существу резко отличаются от резервов углеводов (отложение гликогена в печени и мышцах) и липидов (отложение триацилглицеролов в жировых депо). Следует, однако, подчеркнуть, что существование в организме механизма срочной мобилизации белковых ресурсов в экстремальных условиях (голодание, тяжелая интоксикация, потеря крови и др.), несомненно, имеет важное физиологическое значение.
3.1.2 Биосинтез белков
Одной из глобальных задач современной биологии и ее новейших разделов: молекулярной биологии, биоорганической химии, физикохимической биологии – является выяснение молекулярных основ и тонких механизмов синтеза белка, содержащего сотни, а иногда и тысячи остатков L-амино- кислот. Последние располагаются, как это установлено, не хаотично, а в строго заданной последовательности, обеспечивая тем самым уникальность структуры синтезированной белковой молекулы, наделенной уникальной функцией. Другими словами, механизм синтеза должен обладать весьма тонкой и точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи. Установлено, что кодирующая система однозначно определяет первичную структуру, в то время как вторичная и третичная структуры белковой молекулы определяются физико-химическими свойствами и химической структурой радикалов аминокислот в полипептиде. Правильным оказалось предположение, что для синтеза белка требуются источники энергии, наличие активированных свободных аминокислот и нескольких типов клеточных нуклеиновых кислот. Значительно позже были получены доказательства, что в синтезе белка, протекающем в основном в цитоплазме, решающую роль играют нуклеиновые кислоты, в частности ДНК. После того как было установлено, что ДНК является носителем и хранителем наследственной информации, был поставлен вопрос о том, каким образом эта генетическая информация, записанная (зашифрованная) в химической структуре ДНК, трансформи руется в фенотипические признаки и функциональные свойства живых организмов, передающиеся по наследству. В настоящее время можно дать однозначный ответ на этот вопрос: генетическая информация программирует синтез специфических белков, определяющих в свою очередь специфичность структуры и функции клеток, органов и целостного организма, рисунок 7.
42

43
Рисунок 7. – Принципиальная схема биосинтеза белка (по А.С. Спирину). Красные кружочки – свободные аминокислоты и их
остатки в составе полипептидной цепи.
В природе, как известно, существует два типа биополимерных макромолекул: так называемые неинформативные биополимеры (они представлены повторяющимися мономерными единицами и/или разветвленными структурами, например полисахариды, поли-АДФ-рибоза, пептидогликаны, гликопротеины) и информативные биополимеры, несущие первичную генетическую информацию (нуклеиновые кислоты) и вторичную генетическую, точнее фенотипическую, информацию (белки). Эти общие представления могут быть выражены следующей последовательностью событий (поток информации):
ДНК → РНК → Белок → Клетка → Организм
Не останавливаясь на всех исторических аспектах развития этой важнейшей проблемы, следует напомнить, что еще в 40-х годах было установлено, что ДНК локализована в ядре клетки, в то время как синтез белка протекает главным образом в микросомах цитоплазмы. Первые экспериментальные доказательства необходимости нуклеиновых кислот для синтеза белка были получены в лаборатории Т. Касперсона. Было показано также, что присутствующие в цитоплазме рибонуклеиновые кислоты контролируют синтез цитоплазматических белков. Таким образом, уже тогда вырисовывалась картина тесной связи между ДНК, локализованной в ядре (получены экспериментальные доказательства наличия ДНК также в
43
44
митохондриях: около 1-2% от суммарной ДНК клеток; она негомологична и некомплементарна ядерной ДНК; ДНК кодирует синтез некоторых структурных белков самих митохондрий и особых митохондриальных РНК),
исинтезом белка, протекающим в цитоплазме и регулирующимся рибонуклеиновыми кислотами, которые были открыты как в цитоплазме, так
ив ядре. На основании этих чисто морфологических данных было сделано заключение, полностью подтвержденное в настоящее время, что биосинтез белка, хотя непосредственно и регулируется рибонуклеиновыми кислотами, опосредованно связан с контролирующим влиянием ДНК ядра и что РНК сначала синтезируется в ядре, затем поступает в цитоплазму, где выполняет роль матрицы в синтезе белка. Полученные значительно позже экспериментальные данные подтвердили гипотезу о том, что основными функциями нуклеиновых кислот являются хранение генетической информации и реализация этой информации путем программированного синтеза специфических белков.
Впоследовательности ДНК → РНК → Белок недоставало сведений о том, каким образом происходят расшифровка наследственной информации и синтез специфических белков, определяющих широкое разнообразие признаков живых существ. В настоящее время выяснены основные процессы, посредством которых осуществляется передача наследственной информации: репликация, т.е. синтез ДНК на матрице ДНК; транскрипция, т.е. синтез РНК на матрице ДНК или перевод языка и типа строения ДНК на молекулу РНК, и трансляция – процесс, в котором генетическая информация, содержащаяся в молекуле мРНК, направляет синтез соответствующей аминокислотной последовательности в белке. Напомним, однако, что многие тонкие механизмы транскрипции и трансляции окончательно еще неясны.
ТРАНСЛЯЦИЯ И ОБЩИЕ ТРЕБОВАНИЯ К СИНТЕЗУ БЕЛКА В БЕСКЛЕТОЧНОЙ СИСТЕМЕ
Непосредственное отношение к механизмам передачи наследственной информации, или экспрессии генов, имеет процесс трансляции, означающий перевод «четырехбуквенного языка нуклеиновых кислот на двадцатибуквенную речь белков». Другими словами, трансляция сводится к синтезу белка в рибосомах. В этом процессе только последовательность расположения нуклеотидов в мРНК определяет первичную структуру белка, т.е. строго упорядоченную последовательность расположения отдельных аминокислотных остатков в молекуле синтезируемого белка. Остановимся на анализе тех условий, которые необходимы для осуществления синтеза белка в бесклеточной системе. В современных представлениях о синтезе белка выдающуюся роль сыграли три экспериментальных подхода, разработанные в начале 50-х годов. Во-первых, в классических исследованиях П. Замечника и сотр. при использовании меченых аминокислот был впервые решен вопрос о месте синтеза белка; им оказалась
рибосома.
При введении крысам 15N-аминокислот и определении радиоактивности белков в различных субклеточных фракциях печени, по-
44
45
лученных методом дифференциального центрифугирования через различные промежутки времени, было показано, что радиоактивная метка в первую очередь появляется во фракции микросом и лишь затем в других субклеточных образованиях. Во-вторых, добавление АТФ к белоксинтезирующей системе цитозоля вызывало «активирование» аминокислоты и связывание ее с термостабильной и растворимой формой РНК, впоследствии названной транспортной (тРНК), что приводило к образованию комплекса, названного позже аминоацил-тРНК. Ферменты, катализирующие этот процесс, сейчас называются аминоацил-тРНК- синтетазами. В-третьих, выяснена роль самих адапторных РНК в процессе трансляции. Дальнейшие исследования были направлены на поиск других компонентов белоксинтезирующей системы. Белоксинтезирующая система включает набор всех 20 аминокислот, входящих в состав белковых молекул; минимум 20 разных тРНК, обладающих специфичностью к определенному ферменту и определенной аминокислоте; набор минимум 20 различных ферментов – аминоацил- тРНК-синтетаз, также обладающих двойной специфичностью к какой-либо определенной аминокислоте и к одной тРНК; рибосомы (точнее, полисомы, состоящие из 4–12 монорибосом с присоединенной к ним мРНК); АТФ и АТФ-генерирующую систему ферментов; ГТФ, принимающий специфическое участие в стадиях инициации и элонгации синтеза белка в рибосомах; ионы Mg2+ в концентрации 0,005–0,008 М; мРНК в качестве главного компонента системы, несущей информацию о структуре белка, синтезирующегося в рибосоме; наконец, белковые факторы, участвующие в синтезе на разных уровнях трансляции. Основные компоненты белоксинтезирующей системы про- и эукариотов в разные стадии синтеза белка обобщены в таблице 2.
Рибосомы Как известно, живые организмы в зависимости от структуры клеток делятся на две группы – прокариоты и эукариоты. Первые не содержат ограниченного мембраной ядра и митохондрий или хлоропластов; они представлены главным образом микроорганизмами. Клетки эукариот животных и растений, включая грибы, напротив, содержат ядра с мембранами, а также митохондрии (в ряде случаев и хлоропласты) и другие субклеточные органеллы. Оба типа клеток имеют рибосомы, причем рибосомы эукариот (мол. масса 4,2•106) значительно большего размера (23 нм в диаметре), чем рибосомы прокариот (мол. масса 2,5•106, 8 нм в диаметре). Обычно рибосомы характеризуют по скорости их седиментации в центрифужном поле, которая количественно выражается константой седиментации s в единицах Сведберга S. Величина s зависит не только от размера частиц, но и от формы и плотности, так что она непропорциональна размеру. Число рибосом в микробной клетке равно примерно 104, а эукариот
– около 105. Химически рибосомы представляют собой нуклеопротеины, состоящие из РНК и белков, причем 80S рибосомы эукариот содержат примерно равное их количество, а у 70S рибосом прокариот соотношение РНК и белка составляет 65% и 35% соответственно, рисунок 8.
45

46
Таблица 2. – Состав белоксинтезирующей системы у про- и эукариот в разные стадии синтеза белка
46

47
Рисунок 8 – Компоненты рибосом прокариот и эукариот
РНК рибосом принято называть рибосомными и обозначать рРНК. Как 80S, так и 70S рибосомы состоят из двух субчастиц, которые можно увидеть под электронным микроскопом или после обработки рибосом растворами, содержащими низкие концентрации ионов Mg2+. При этих условиях рибосомы диссоциируют на субчастицы; последние могут быть отделены друг от друга методом ультрацентрифугирования. Одна из субчастиц по размерам в 2 раза превышает вторую. Так, у 70S рибосом величины s для субчастиц равны 50S и 30S, у 80S рибосом – соответственно 60S и 40S. Укажем также, что у Е. coli большая и малая субчастицы содержат 34 белка и 21 белок соответственно и, кроме того, 2 молекулы рРНК с коэффициентами седиментации 23S и 5S в большой и одну молекулу рРНК (16S) в малой субчастице. Рибосомные белки не только все выделены, но и секвенированы; отличаются большим разнообразием молекулярной массы (от 6000 до 75000). Считается, что все 55 бактериальных рибосомных белков участвуют в синтезе полипептидов в качестве ферментов или структурных компонентов, но, за исключением небольшого числа, детальная функция большинства из них не выяснена. РНК 23S и 5S содержат 3200 и 120 нуклеотидов соответственно, a 16S РНК – 1540 нуклеотидов. Субчастицы рибосом клеток эукариот построены более сложно. В их составе четыре разные рРНК и более 70 разных белков в обеих субчастицах, при этом большая субчастица (60S) содержит три разного размера рРНК: 28S (4700 нуклеотидов), 5,8S (160 нуклеотидов) и 5S (120 нуклеотидов) – и около 49 белков. Малая субчастица (40S) содержит всего одну молекулу 18S рРНК и около 33 белков. Укажем также, что биологические функции компонентов
47
48
эукариотических рибосом также связаны, вероятнее всего, с синтезом полипептидной цепи, но их конкретная роль недостаточно раскрыта. Рибосомы представляют собой сложную молекулярную «машину» («фабрику») синтеза белка. Для выяснения тонких механизмов синтеза белка в рибосомах необходимы более точные сведения о структуре и функциях всех компонентов рибосом. В последнее время получены данные, свидетельствующие о вероятной пространственной трехмерной структуре как целых рибосом, так и их субчастиц. В частности, выяснено, что форму и размеры 30S и 40S субчастиц рибосом предопределяют не белковые молекулы этих частиц, а третичная структура входящих в их состав 16S и 18S рРНК. Более того, по данным акад. А.С. Спирина, для сохранения пространственной морфологической модели всей 30S субчастицы оказалось достаточным наличие только двух белков (из 21), содержащихся в определенных топографических участках молекулы 16S рРНК. Известно, что рРНК образуется из общего предшественника всех типов клеточных РНК, в свою очередь синтезирующегося на матрице ДНК в ядре. Рибосомные белки имеют цитоплазматическое происхождение, затем они транспортируются в ядрышки, где и происходит спонтанное образование рибосомных субчастиц путем объединения белков с соответствующими рРНК. Объединенные субчастицы вместе или врозь транспортируются через поры ядерной мембраны обратно в цитоплазму, где группа рибосом вместе с мРНК образует полисомы или полирибосомы, принимающие непосредственное участие в синтезе белка.
Аминоацил-тРНК-синтетазы Экспериментально доказано существование в любых клетках живых организмов специфических ферментов, катализирующих активирование аминокислот и связывание последних с определенными тРНК. Все эти ферменты выделены в чистом виде из Е. coli, секвенированы, и для ряда их установлена трехмерная структура. Все они оказались чувствительными к реагентам на SH-группы и требуют присутствия ионов Mg2+. Ферменты обладают абсолютной специфичностью действия, поскольку они узнают только одну какую-либо L- аминокислоту или одну тРНК. Для тех аминокислот, для которых открыты две и более тРНК , соответствующая аминоацил- тРНК-синтетаза катализирует аминоацилирование всех этих тРНК. Это обстоятельство чрезвычайно важно, поскольку в дальнейшем в белковом синтезе «узнавание» аминоацил-тРНК основано не на природе аминокислоты, а на химической природе антикодона тРНК. Считается, что в молекуле каждой аминоацил-тРНК-синтетазы имеются, по крайней мере, 3 центра связывания: для аминокислоты, тРНК и АТФ; ферменты весьма чувствительны также к аналогам аминокислот, которые ингибируют активирование соответствующих аминокислот. Некоторые ферменты состоят из одной полипептидной цепи, другие – из двух или четырех гомологичных или гетерогенных субъединиц. Аминоацил-тРНК-синтетазы в последнее время стали делить на 2 класса в соответствии с различиями в их первичной и третичной структурах, а также в зависимости от своеобразия механизма
48
49
катализируемой реакции. Первый класс включает ферменты, катализирующие синтез аминоацилтРНК следующих аминокислот: Арг, Вал, Глн, Глу, Иле, Лей, Мет, Тир, Трп, Цис; второй класс – аминокислот Ала, Асн, Асп, Гис, Гли, Лиз, Про, Сер, Тре, Фен. Оказалось, что ферменты 1-го класса обеспечивают перенос аминоацильной группы сначала ко второй 2'-ОН-группе терминального остатка адениловой кислоты, затем перемещение ее к 3'-ОН-группе (путем реакции трансэтерификации), в то время как ферменты 2-го класса катализируют перенос аминоацильной группы непосредственно к 3'-ОН-группе концевого аденилового нуклеотида. Аминоацил-тРНК-синтетазы в активном центре содержат гистидин, имидазольное кольцо которого участвует в связывании АТФ посредством ионов Mg2+. Наибольшим сродством эти ферменты, как было указано, обладают к молекулам специфических тРНК, хотя конкретный механизм, посредством которого ферменты узнают подходящую РНК, пока неясен. В то же время эти ферменты отличаются низкой молярной активностью (число оборотов не превышает нескольких сот каталитических актов в минуту).
Транспортные РНК. В лаборатории М. Хогланда было выяснено, что при инкубации 14С-аминокислоты с растворимой фракцией цитоплазмы в присутствии АТФ и последующим добавлением трихлоруксусной кислоты в образовавшемся белковом осадке метка не открывается. Эти данные позволили сделать заключение, что меченая аминокислота не включается в белковую молекулу. Метка оказалась связанной ковалентно с РНК, содержащейся в безбелковом фильтрате. Дальнейшие исследования показали, что РНК, к которой присоединяется меченая аминокислота, имеет небольшую молекулярную массу и сосредоточена в растворимой фракции, поэтому ее сначала назвали растворимой, а позже адапторной, или транспортной, РНК (тРНК). На долю тРНК приходится около 10–15% от общего количества клеточной РНК. К настоящему времени открыто более 60 различных тРНК. Для каждой аминокислоты в клетке имеется по крайней мере одна специфическая тРНК. (Для ряда аминокислот открыто более одной: в частности, для серина, лейцина и аргинина – 6 разных тРНК, для аланина, треонина и глицина – по 4 разных тРНК, хотя и в этом случае каждая тРНК связана со специфической аминоацил-тРНК-синтетазой.) Молекулярная масса большинства тРНК колеблется от 24000 до 29000. Они содержат от 75 до 85 нуклеотидов, в том числе 8 и более из них являются модифицированными основаниями. Аминокислоты присоединяются в конечном итоге к свободной 3'-ОН-группе (см. ранее о ферментах аминоацил- тРНК-синтетаз 1-го класса) концевого мононуклеотида, представленного во всех тРНК АМФ (адениловая кислота), путем образования эфирной связи. Интересно, что почти все тРНК обладают не только удивительно сходными функциями, но и очень похожей трехмерной структурой, рисунок 9. Установлена первичная структура почти всех 60 открытых тРНК, на рисунке 10. Знание последовательности нуклеотидов и, следовательно, состава тРНК дало в руки исследователей много ценных сведений о биологической роли отдельных компонентов тРНК.
49

50
Рисунок 9. – Структура тРНК. а - общая структура различных тРНК; б - пространственная структура тРНК
Рисунок 10. – Созревание валиновой тРНК (по А.А. Баеву). Цифрами обозначены фрагменты молекулы тРНК
50