- •Сети связи специального назначения
- •Классификация сетей
- •Классификация сетей
- •Управление сетями
- •Вцелом, сеть электросвязи можно рассматривать как кибернетическую систему, которая включает объект управления ОУ
- •ИИ – источник информации; ОП – оконечный пункт; ПИ –
- •Сеть связи специального назначения – определение, состав, требования
- •Сеть связи – технологическая система, включающая в себя средства и линии связи и
- •Первичная (транспортная) сеть связи – совокупность технических средств, комплексов, линий связи и обслуживающего
- •Характеристика сети связи специального назначения как организационно-технической системы
- •Основные требования,предъявляемые к сети связи специального назначения
- •Состав и структура сети связи специального назначения
- •Основные требования, предъявляемые к сети связи специального назначения
- •Основной особенностью СС СН, которая отличает ее от СС ОП, является то, что
- •Многоэшелонированное построение современных сетей связи специального назначения
- •Рис. Общая схема многоэшелонированного построения СС СН
- •Наземный эшелон включает в себя:
- •Квоздушному сегменту относится транспортная сеть, включающая в себя бортовые комплексы связи, которыми оснащаются
- •Технологии построения СС СН
- •Технологии построения СС СН
- •Технологии построения СС СН
- •Технологии построения СС СН
- •Основные тенденции развития современных сетей связи специального назначения
- •Широкое использование в составе сети связи специального назначения канальных и сетевых ресурсов, арендуемых
- •Таким образом, из самого факта сопряжения СС СН и СС ОП следует два
- •Рис. 12. Общая структура информационного пространства на основе GIG
- •Переход от сетей связи специального назначения к инфокоммуникационным сетям
- •Средства ИКС СН помимо услуги связи предоставляют также информационные услуги, основанные на
- •-для предоставления инфокоммуникационных услуг зачастую необходимы сложные многоточечные топологические конфигурации сетевых соединений;
- •Описательная модель сети связи специального назначения – основные протоколы и технологии
- •Маршрутные протоколы
- •Протоколы групповой рассылки
- •Протоколы повышения надежности маршрутизации
- •Протоколы и технологии обеспечения качества обслуживания
- •Протоколы безопасности
- •Межсистемные протоколы и интерфейсы
- •3) Протоколы групповой рассылки:
- •СССН – это сеть связи, функционирующая в интересах государственной и военной систем управления.
- •Структурная схема ВОСП
- •Классификация ВОСП
- •Сетевые элементы
- •Синхронизация сетей связи
- •Распределение тактового синхронизма в цифровых сетях связи
- ••При распределении тактового синхронизма внутри регионов используется принцип принудительной иерархической синхронизации (ведущий -
- ••Источники систем синхронизации (сетей ТСС) подразделяются на два типа: атомные и кварцевые.
- ••Кварцевые генераторы подразделяются на три вида: обычные кварцевые, кварцевые с температурной компенсацией ТСХО
- ••Источники тактового синхронизма на основе GPS (Global Position System) - глобальной системы позиционирования
- ••В качестве иллюстрации параметров стабильности и точности на рис. ниже представлены несколько вариантов
- ••При проектировании схем ТСС для СЦИ необходимо:
- •В наиболее общем случае СС включает в себя:
- ••Главная причина проблем синхронизации в цифровых сетях передачи данных - нестабильность временной синхронизации.
- •Синхронизация в пакетных сетях
- •Требования к синхронизации сетей радиодоступа
- •Синхронный Eth
- •В результате работы, подкрепленной экспериментальными исследованиями и разработкой необходимой элементной базы, идея синхронного
- •Технология SyncE
- ••основные требования ITU G.8262/Y1362.
- •Реализация систем SyncE
- ••Синхронизация времени в промышленных сетях необходима для согласования работы устройств и приложений, осуществляющих
- •Технологии синхронизации по времени
- ••Stratum 0
- ••Stratum 1
- ••Stratum 2
- •Метки времени
- •Алгоритм синхронизации часов
- ••Каждый уровень системы NTP называется слоем и содержит источники времени.
- •Алгоритм расчета смещения времени и круговой задержки
- •Механизмы передачи
- ••Режим Multicast
- •Типовая схема системы синхронизации и ее недостатки
- ••SNTP (Simple Network Time Protocol) – Простой протокол сетевого времени. Применяется в локальных
- •PTP (Precision Time protocol)
- ••Версии PTP
- •Типы устройств в системе РТР:
- •Основные проблемы синхронизации
- ••Фаза 1 — Установка иерархии «мастер-слэйв»
- •Информация о часах на другом конце «провода» присылается в специальном сообщении (Announce message).
- ••Фаза 2 — Синхронизация обычных и граничных часов
- •Механизм запроса-ответа задержки (Delay request-response mechanism)
- •Когда ведомые часы знают время t1, t2, t3 и t4, то они могут
- ••При передаче сообщения Sync и Follow_Up вычисляется задержка времени от мастера к слэйву
- •Коррекция сдвига точного времени
- •Измерение задержки между устройствами, поддерживающих режим Peer-to-Peer
- •Когда порту 1 известно время t1, t2, t3 и t4, он может рассчитать
- •Корректировка сдвига точного времени
- •Режимы работы прозрачных часов
- •Прозрачные часы E2E измеряют время обработки для сообщений Sync
- •Peer-to-Peer
- ••Типы поддержки PTPv2 коммутаторами
- •Существует несколько типов сообщений. Эти типы описаны ниже:
- ••Сообщение Follow_Up
- ••Сообщение Pdelay_Resp
- •Профили
- •МАРШРУТИЗАЦИЯ ОПТИЧЕСКИХ КАНАЛОВ
- ••Распределение трафика в оптической транспортной сети с позиций функций grooming (Trafficgrooming)может происходить статично,
- •SRWA (Static Routing and Wavelength
- ••Основная задача RWA формулируется в следующем порядке: известно множество оптических или световых путей,
- •Динамическая маршрутизация DRWA(Dynamic Routing and Wavelength Assignment)
- •ASON(Automatically Switched Optical
- •Автоматически коммутируемые оптические транспортные сети ASON
- •Основными архитектурными элементами ASON являются:
- •В сигнальном взаимодействии ASON используются части общего протокола многопротокольной коммутации по меткам G-MPLS
- ••На рис. представлен пример двухэтапного варианта (a,b)установления оптического соединения c назначением волн для
- ••Принцип взаимодействия в сети управления основан на связи типа «Клиент-сервер», где в сервере
- •Логическое построение ASON
- ••Для реализации ASON/GMPLS на фотонном уровне в узлах WDM-сети размещаются системы T&ROADM, обеспечивающие
- ••ASON
- •Когерентные ВОСП
- •Преимущества когерентных ВОСП
- •Оптические волокна для К-ВОСП
- ••волокно типа TeraWave в современном, улучшенном исполнении, соответствующее рекомендации МСЭ-T G.654, раз-работанное для
- •ПЕРЕДАТЧИКИ И ПРИЕМНИКИ СИГНАЛОВ ОПТИЧЕСКИХ КОГЕРЕНТНЫХ СИСТЕМ
- ••─управление уровнем мощности в задаваемых пределах для оптических интерфейсов;
- •ЛД для ВОСП
- •Конструкции лазерных диодов для К-ВОСП
- •Приемники К-ВОСП
- •SDN и NFV: как это работает на сети оператора связи .
- •Технологии построения аппаратуры
Прозрачные часы E2E измеряют время обработки для сообщений Sync
и Delay_Req, проходящих через коммутатор. Но при этом важно понимать, что задержка времени между ведущими часами и ведомыми часами вычисляется при помощи механизма запроса-ответа задержки. Если ведущие часы меняются или меняется путь от ведущих часов до ведомых, то задержка измеряется заново. Это увеличивает время переходного состояния в случае изменений сети.
Peer-to-Peer
Прозрачные часы P2P, помимо измерения времени обработки сообщения коммутатором, измеряют задержку на канале передачи данных до ближайшего соседа, используя механизм измерения задержки соседнего узла.
Задержка измеряется на каждом канале в обоих направлениях, включая каналы, которые заблокированы каким-либо протоколом (например, RSTP). Это позволяет сразу вычислить новую задержку на пути синхронизации, если изменились гроссмейстерские часы или топология сети.
Время обработки сообщений коммутаторами и время задержки аккумулируются при передачи сообщений Sync или Follow_Up.
•Типы поддержки PTPv2 коммутаторами
•Коммутаторы могут поддерживать PTPv2:
•программно;
•аппаратно.
•При программной реализации протокола PTPv2 коммутатор запрашивает метку времени у прошивки. Проблема заключается в том, что прошивка работает циклически, и придется подождать, пока она закончит текущий цикл, возьмет запрос в обработку и по истечению следующего цикла выдаст метку времени. На это все также уйдет время, и мы получим задержку, пусть и не такую существенную как без программной поддержки PTPv2.
•Соблюсти необходимую точность позволяет только аппаратная поддержка PTPv2. В этом случае выдача метки времени выполняется специальным ASIC’ом, который установлен на порт.
Существует несколько типов сообщений. Эти типы описаны ниже:
•Сообщение Announce
•Используется для того, чтобы «рассказать» другим часам внутри одного домена о своих параметрах. Это сообщение позволяет установить иерархию «Ведущие часы — Ведомые часы».
•Сообщение Sync
•Отправляется ведущими часами и содержит время ведущих часов на момент, когда сообщение Sync было создано. Если ведущие часы двухступенчатые, то метка времени
всообщении Sync будет приравнена к 0, а актуальная метка времени будет послана
всопряженном сообщении Follow_Up. Сообщение Sync используется для обоих механизмов измерения задержки.
•Сообщение передается при помощи Multicast. Опционально можно использовать Unicast.
•Сообщение Delay_Req
•Формат сообщения идентичен сообщению Sync. Ведомые часы посылают Delay_Req. Оно содержит время отправки Delay_Req ведомыми часами. Данное сообщение используется только для механизма запроса-ответа задержки.
•Сообщение передается при помощи Multicast. Опционально можно использовать Unicast.
•Сообщение Follow_Up
•Опционально отправляется ведущими часами и содержит время отправки сообщения Sync мастером. Сообщение Follow_Up отправляют только двухступенчатые ведущие часы. Используется для обоих механизмов измерения задержки и передается при помощи Multicast. Опционально можно использовать Unicast.
•Сообщение Delay_Resp
•Отправляется ведущими часами. Оно содержит время приема Delay_Req ведущими часами. Данное сообщение используется только для механизма запроса-ответа задержки. Сообщение передается при помощи Multicast. Опционально можно использовать Unicast.
•Сообщение Pdelay_Req
•Отправляется устройством, которое запрашивает задержку. Оно содержит время отправки сообщения с порта этого устройства. Pdelay_Req используется только для механизма измерения задержки соседнего узла.
•Сообщение Pdelay_Resp
•Отправляется устройством, которое получило запрос на задержку. Оно содержит время приема сообщения Pdelay_Req данным устройством. Этот формат используется только для механизма измерения задержки соседнего узла.
•Сообщение Pdelay_Resp_Follow_Up
•Опционально отправляется устройством, которое получило запрос на задержку. Оно содержит время приема сообщения Pdelay_Req этим устройством. Сообщение Pdelay_Resp_Follow_Up отправляется только двухступенчатыми ведущими часами.
•Также это сообщение может использоваться для времени исполнения вместо метки времени. Время исполнения — это время от момента получения Pdelay-Req
до отправки Pdelay_Resp.
•Pdelay_Resp_Follow_Up используются только для механизма измерения задержки соседнего узла.
•Управляющие сообщения (Сообщение Management)
•Необходимы для передачи информации между одними или несколькими часами и управляющим узлом.
Профили
•PTP имеет достаточно много «гибких» параметров, которые необходимы настроить. Например:
•Опции BMCA.
•Механизм измерения задержки.
•Интервалы и начальные значения всех конфигурируемых параметров и т.д.
•И несмотря на то, что ранее мы говорили, что устройства PTPv2 совместимы между собой, по-хорошему это не так. Устройства должна иметь одинаковые настройки, чтобы взаимодействовать.
•Поэтому существуют так называемые профили PTPv2. Профили являются группами сконфигурированных настроек и определенных ограничений протокола, чтобы можно было реализовать синхронизацию времени для определенного приложения.
•Сам стандарт IEEE 1588v2 описывает только один профиль — «Default Profile». Все остальные профили созданы и описаны различными организациями и ассоциациями.
•Например, профиль для электроэнергетики или PTPv2 Power Profile был создан комитетом Power Systems Relaying Committee и комитетом Substation Committee общества IEEE Power and Energy Society. Сам профиль носит название IEEE C37.238- 2011.
•Профиль описывает, что PTP может передаваться:
•Только через L2-сети (т.е. Ethernet, HSR, PRP, не IP).
•Сообщения передаются только Multicast-рассылкой.
•В качестве механизма измерения задержки используется Peer delay measurement mechanism.
МАРШРУТИЗАЦИЯ ОПТИЧЕСКИХ КАНАЛОВ
•Маршрутизация оптических каналов в сети необходима для наиболее эффективной организации соединений с точки зрения пропуска информационного трафика и его защиты в условиях ограниченного числа несущих волн (всего до 120волн в диапазонах стандартных волокон C, L(1530–1625нм) с волновым интервалом 0,8нм (частотный интервал 100ГГц) для каналов на скорости 112Гбит/с или до 240 волн с волновым интервалом 0,4нм (частотный интервал 50ГГц)).Маршрутизация оптических каналов осуществляется в отдельных перекрывающихся плоскостях Wi, т.е. на различных длинах волн λi с исключением совпадений (рис. ниже) и возможными вариантами управления одиночными и сцепленными соединениями (несколько каналов для одного соединения).
•Распределение трафика в оптической транспортной сети с позиций функций grooming (Trafficgrooming)может происходить статично, т.е. фиксировано во времени и в пространстве соединений достаточно длительный период и динамично, т.е. изменением структуры предоставляемых ресурсов под информационный трафик по запросам на сеансы с ограниченной длительностью и из-меняемыми скоростями передачи. Для поддержки статической и динамической маршрутизации используются различные алгоритмы и протоколы с назначением ресурсов оптических сетей, например, с назначением когерентных оптических каналов на различные требования по OSNR, общими участками, переприемами с коммутацией и без нее (Single-HopGroomingWDM, Multi- HopGroom-ingWDM–односкачковый (одноступенчатый) и многоскачковый (многоступенчатый) варианты назначения оптических каналов в сети со спектральным мультиплексированием) и т.п.
