- •Базовые принципы построения телекоммуникационных сетей
- •Логарифмические единицы передачи. Диаграмма уровней
- •Основные характеристики первичных сигналов (определения)
- •В прошлом всё описано
- •Асп на основе чрк
- •Амплитудно-импульсная модуляция (аим)
- •Структурная схема мсп с врк
- •Этапы формирования цифрового сигнала
- •1. Кодирование источника (форматирование)
- •Сжатие данных (этап кодирования источника):
- •2. Кодирование канала:
- •3. Цифровая модуляция (манипуляция)
- •Математические модели детерминированного сигнала
- •Равномерное и неравномерное квантование сигнала по уровню
- •Принципы двоичного кодирования и декодирования
- •Принципы регенерации цифрового сигнала
- •Иерархические принципы построения цсп
- •Особенности построения восп
- •Общие принципы построения ррсп
- •!!! Схема врк
- •!!! Схема чрк
Иерархические принципы построения цсп
Цифровые системы передачи строятся по определенной иерархической структуре, для которой характерно объединение и разделение потоков передаваемой информации. Иерархический принцип построения ЦСП заключается в том, что число каналов в последующей ступени иерархии больше числа каналов предыдущей ступени в целое число раз. Система передачи, соответствующая первой ступени, называется первичной. В ней осуществляется прямое преобразование относительно небольшого числа индивидуальных сигналов в первичный цифровой поток. Системы передачи второй ступени иерархии объединяют определенное число первичных потоков во вторичный цифровой поток и т. д. В настоящее время в мире наибольшее распространение получили два типа иерархии ЦСП: европейская и североамериканская. Европейская иерархия (рис. 4.12, а) основывается на первичной ЦСП типа ИКМ-30, в которой с помощью аналого-цифрового оборудования (АЦО) образуются 30 каналов со скоростью передачи информации 64 кбит/с каждый. Скорость передачи первичного группового сигнала составляет 2048 кбит/с. При формировании групповых сигналов более высокого уровня иерархии используется принцип временного объединения цифровых потоков предыдущего уровня иерархии. Коэффициент объединения для всех ступеней иерархии равен четырем. Во всех потоках отводятся специальные позиции для передачи служебных сигналов. Например, скорость вторичного потока равная 2048 * 4 + 256 = 8448 кбит/с определена скоростями четырех первичных потоков по 2048 кбит/с и служебной информацией 256 кбит/с, предназначенной для согласования скоростей объединяемых цифровых потоков.
Особенности построения восп
Основным направлением развития телекоммуникационных систем является широкое применение волоконно-оптических систем передачи (ВОСП), под которыми понимается совокупность активных и пассивных устройств, предназначенных для передачи сообщений на расстояния по оптическим волокнам (ОВ) с помощью оптических волн и сигналов. Другими словами, ВОСП — это совокупность оптических устройств и оптических линий передачи, обеспечивающая формирование, обработку и передачу оптических сигналов. Физической средой распространения оптических сигналов являются волоконно-оптические или, просто, оптические кабели и создаваемые на их основе волоконно-оптические линии связи (ВОЛС). Совокупность ВОСП и ВОЛС образует волоконно-оптическую линию передачи (ВОЛП).
В ВОСП передача сообщений осуществляется посредством световых волн от 0,1 мкм до 1 мм. Диапазоны длин волн (или частот), в пределах которых обеспечиваются наилучшие условия распространения световых волн по оптическому волокну, называются его окнами прозрачности.
В настоящее время для построения ВОСП используются длины волн от 0,8 мкм до 1,65 мкм (в дальнейшем предполагается освоение и более длинных волн - 2,4 и 2,6 мкм), называемые инфракрасным излучением (просто светом) или оптическим излучением (ОИ).
Для увеличения дальности передачи засчет наилучшего распространения световой волны были исследованы различные оптические волноводы, называемые оптическими волокнами (ОВ) или световодами, под которыми понимаются направляющие каналы для передачи оптического излучения, состоящие из сердцевины, окруженной оболочкой (оболочками). ОВ в сочетании с оптоэлектронными технологиями (генерация оптического излучения, его усиление, прием, обработка оптических сигналов и др.) дали развитие современному направлению техники, носящему название волоконной оптики - раздела оптики, рассматривающего передачу излучения по волоконным световодам - оптическим волокнам.
Нижеперечисленные достоинства ВОЛС обеспечили их быстрое и широкое применение:
1. Возможность получения ОВ с параметрами, обеспечивающими расстояние между ретрансляторами не менее 100...150 км.
2. Производство оптических кабелей (ОК) с малыми габаритными размерами и массой при высокой информационной пропускной способности.
3. Постоянное и непрерывное снижение стоимости производства оптических кабелей и совершенствование технологии их производства.
4. Высокая защищенность от внешних электромагнитных воздействий и переходных помех.
5. Высокая скрытность связи (утечка информации): ответвление сигнала возможно только при непосредственном подсоединении к отдельному волокну.
6. Гибкость в реализации требуемой полосы пропускания: ОВ различных типов позволяют заменить электрические кабели в цифровых системах передачи всех уровней иерархии.
7. Возможность постоянного совершенствования ВОСП по мере появления новых источников оптического излучения, оптических волокон, фотоприемников и усилителей оптического излучения с улучшенными характеристиками или при повышении требований к их характеристикам при полном сохранении совместимости с другими системами передачи.
8. Соответствующим образом спроектированные ВОЛС относительно невосприимчивы к неблагоприятным температурным условиям и влажности и могут быть использованы для подводных кабелей.
9. Надежная техника безопасности (безвредность во взрывоопасных средах, отсутствие искрения и короткого замыкания), возможность обеспечения полной электрической изоляции.
Благодаря этим преимуществам ВОСП находят самое широкое применение при создании систем связи как на региональном уровне, так и при создании транснациональных систем связи. Так, завершено создание Транссибирской оптической линии (ТСЛ) протяженностью около 17 000 км, проходящей по всей территории России, которая свяжет Восток и Запад страны со странами Европы, Азии и Америки. Входя в мировую транснациональную сеть связи, ТСЛ замыкает глобальное волоконно-оптическое кольцо цифровой связи, которое охватывает четыре континента - Европу, Азию, Америку, Австралию и три океана - Атлантический, Тихий и Индийский. Кроме того, действуют подводные оптические магистрали между США и Европой через Атлантический океан, Австралия - Новая Зеландия - Гавайи - Северная Америка протяженностью 16 000 км.
К концу XX века завершена прокладка трансатлантической ВОЛС протяженностью около 6000 км без ретрансляторов между Америкой и Европой. Эта линия сооружена на волокне из тетрафторида циркония, имеющего на длине волны 2,5 мкм затухание 0,01 дБ/км, или из фторида бериллия с затуханием 0,005 дБ/км на длине волны 2,1 мкм.
Для описания параметров оптических кабелей и компонентов ВОСП используется как частота, так и длина волны оптического излучения. Связь между длиной волны и частотой оптического сигнала определяются соотношением:
где - длина волны оптического излучения в среде распространения; - частота сигнала; - скорость света в среде распространения.
Скорость света при распространении его через оптически прозрачный материал связана с его показателем преломления следующим образом:
здесь - скорость света в вакууме; - показатель преломления среды распространения оптического сигнала.
Очевидно, что длина волны оптического сигнала изменяется с изменением показателя преломления среды
где называется длиной волны в свободном пространстве, т.е. длиной волны, которая будет измерена в вакууме.
Очень часто особое значение приобретает разница между длинами волн или разница частот.
Эти уравнения весьма полезны, так как часто возникает необходимость преобразования данных параметров из одних единиц измерения в другие. Так, например, в полосе пропускания ВОСП с центральной длиной волны = 1,3 мкм ширина полосы излучения равна = 0,0001 мкм, а ширина полосы частот излучения будет равна = 40 ГГц.
В состав волоконно-оптической системы передачи (ВОСП) входят следующие технические средства:
1) каналообразующее оборудование (КОО) тракта передачи, обеспечивающее формирование определенного числа типовых каналов или типовых групповых трактов со стандартной шириной полосы пропускания или скоростью передачи;
2) оборудование сопряжения (ОС) тракта, необходимое для сопряжения параметров многоканального сигнала на выходе КОО с параметрами оптического передатчика;
3) оптический передатчик (ОПер), обеспечивающий преобразование электрического сигнала в оптический сигнал, длина волны которого совпадает с одним из окон прозрачности оптического волокна; в состав ОПер входят: источник оптического излучения (ИОИ) - оптической несущей, один или несколько параметров которой модулируются электрическим многоканальным сигналом, поступающим с ОС, и согласующее устройство (СУ), необходимое для ввода оптического излучения в волокно оптического кабеля с минимально возможными потерями; как правило, источник оптического излучения и согласующее устройство образуют единый блок, называемый передающим оптическим модулем (ПОМ);
4) оптический кабель, волокна которого (ОВ) служат средой распространения оптического излучения;
5) оптический ретранслятор (OP), обеспечивающий компенсацию затухания сигнала при его прохождении по оптическому волокну (ОВ) и коррекцию различного вида искажений; (ОР) могут быть обслуживаемыми или необслуживаемыми и устанавливаются через определенные расстояния, называемые ретрансляционными участками; в ОР может производиться обработка (усиление, коррекция, регенерация и т.д.) как электрического сигнала, который получается путем преобразования оптического сигнала и последующего преобразования скорректированного электрического сигнала в оптический, так и оптического сигнала с помощью оптических квантовых усилителей;
6) оптический приемник (ОПр), обеспечивающий прием оптического излучения и преобразования его в электрический сигнал; ОПр включает в себя согласующее устройство (СУ), необходимое для вывода оптического излучения из ОВ с минимальными потерями, и приемник оптического излучения (ПОИ); совокупность согласующего устройства и приемника оптического излучения представляет приемный оптический модуль (ПРОМ);
7) оборудование сопряжения (ОС) тракта приема, преобразующее сигнал на выходе ПРОМ в многоканальный сигнал соответствующего КОО;
8) каналообразующее оборудование (КОО) тракта приема, осуществляющее обратные преобразования многоканального сигнала в сигналы отдельных типовых каналов и трактов.
