- •1) Классификация тепловых двигателей.
- •2) Сравнение тепловых двигателей.
- •3) Краткая история развития поршневых двигателей.
- •4) Современный уровень развития транспортного двигателестроения.
- •5) Связь с глобальными проблемами современной цивилизации.
- •6) Экологическая и энергетическая проблемы.
- •7) Классификация поршневых двигателей.
- •8) Термодинамические циклы поршневых двигателей.
- •9) Рабочий процесс и индикаторная диаграмма 4-х тактных двигателей.
- •10) Рабочий процесс и индикаторная диаграмма 2-х тактных двигателей.
- •11) Работа, выполненная в цилиндре ДВС.
- •12) Цикл Карно и теорема Карно.
- •13) Обобщенный термодинамический цикл поршневых и комбинированных двигателей.
- •14) Циклы Отто, Дизеля и Тринклера. Их сравнительный анализ.
- •15) Основные схемы комбинированных двигателей (КДВС).
- •16) Термодинамический цикл КДВС с импульсной турбиной.
- •17) Термодинамический цикл КДВС с постоянным давлением перед турбиной.
- •18) Термодинамический цикл КДВС с промежуточным охлаждением надувочного воздуха.
- •19) Цикл Стирлинга.
- •20) Принцип действия двигателя с внешним подводом теплоты.
- •21) Роторно-поршневой двигатель (РПД) Ванкеля.
- •22) Бесшатунные двигатели Баландина и другие альтернативные кинематические механизмы, используемые в ДВС.
- •24) Основные виды топлив, применяемых в ДВС.
- •25) Альтернативные топлива.
- •26) Предпосылки и перспективы использования альтернативных топлив.
- •27) Теплота сгорания топлива и топливно-воздушной смеси.
- •28) Коэффициент избытка воздуха, коэффициент молекулярного изменения.
- •29) Коэффициент остаточных газов.
- •30) Коэффициент наполнения.
- •31) Особенности процесса наполнения в двухтактных двигателях.
- •32) Октановое число. Цетановое число.
- •34) Индикаторные и эффективные показатели ДВС.
- •35) Среднее индикаторное давление, индикаторная мощность, индикаторный КПД.
- •37) Механические потери двигателя, механический КПД.
- •38) Удельный индикаторный и эффективный расходы топлива.
- •39) Тепловой баланс двигателя.
- •40) Конструктивные, регулировочные и режимные параметры, влияющие на индикаторные и эффективные показатели двигателя.
- •41) Литровая и поршневая мощность.
- •42) Способы увеличения мощности двигателя.
- •43) Расчет рабочего процесса поршневых двигателей.
- •44-45) Цель и задачи расчета рабочего процесса. Прямая и обратная задачи.
- •46) Краткое изложение метода расчета В.И. Гриневецкого.
- •48) Тепловыделение и теплообмен в цилиндре поршневого двигателя.
- •49) Понятие двух- и многозонных моделей, необходимость их введения и сравнительный анализ.
- •50) Краткая характеристика современных программных комплексов, предназначенных для расчета рабочего процесса в ДВС.
- •51) Организация рабочего процесса в ДВС.
- •52) Основные типы камер сгорания.
- •53) Генерация вихря при впуске.
- •54) Интенсивность вихревого движения заряда в цилиндре дизеля.
- •55) Особенности вихревого движения в двигателе с непосредственным впрыскиванием бензина.
- •56) Расслоение заряда.
- •57) Неразделенные камеры сгорания с объемным смесеобразованием.
- •58) Полуразделенные камеры сгорания с объемно-пленочным смесеобразованием.
- •59) Разделенные камеры сгорания.
- •60) Сравнительный анализ различных типов камер сгорания.
- •61) Смесеобразование и сгорание в ДВС.
- •62) Подача топлива в ДВС.
- •63) Впрыскивание во впускной системе.
- •64) Впрыскивание в непосредственно в цилиндр.
- •65) Закон впрыскивания.
- •66) Динамика топливного факела.
- •67) Распад струй топлива по каплям.
- •68) Средний диаметр капель топлива.
- •69) Закон Розина-Рамлера.
- •70) Испарение капли в условиях камеры сгорания.
- •71) Период задержки воспламенения.
- •72) Протекание цепных реакции горения.
- •73) Тепловыделение.
- •74) Закон Вибе.
- •75) Другие законы тепловыделения.
- •76) Особенности сгорания двигателях с принудительным зажиганием.
- •77) Особенности сгорания в дизелях.
- •78) Кинетические и диффузионные фазы сгорания.
- •79) Нарушение нормального процесса сгорания.
- •80) Детонация.
- •81) Преждевременное воспламенение.
- •82) Калильное зажигание.
- •83) Турбулентность в камере сгорания.
- •84) Тепловой баланс ДВС. Теплообмен в ДВС.
- •85) Тепловой баланс ДВС.
- •86) Нестационарный сложный (радиационно-конвективный) теплообмен в камере сгорания.
- •87) Осредненный (по поверхности КС) коэффициент теплоотдачи.
- •88) Локальный теплообмен в КС.
- •89) Теплообмен в системе охлаждения. взаимосвязи.
- •90) Характеристики транспортных двигателей.
- •91) Требования к характеристикам транспортных двигателей.
- •92) Устойчивость режима работы.
- •93) Скоростные, нагрузочные, регулировочные, регуляторные, винтовые и специальные характеристики комбинированных двигателей.
- •94) Экологические характеристики ДВС.
- •95) Способы улучшения характеристик комбинированных двигателей.
- •96) Моделирование характеристик двигателей.
- •97) Виды кинематических механизмов, преобразующих поступательное движение поршня во вращательное движение вала
- •98) Кинематика нормального и дезаксиального кривошипно-шатунного механизма.
- •99) Силы, действующие в кривошипно-шатунном механизме.
- •100) Расчет сил, действующих в КШМ.
- •101) Построение диаграммы крутящего момента на коренные шейки вала двигателя.
- •102) Уравновешивание поршневых двигателей.
- •103) Неуравновешенные силовые факторы.
- •104) Способы уравновешивания сил и моментов в поршневых двигателях.
- •105) Уравновешивание одноцилиндровых двигателей.
- •106) Метод Ланчестера.
- •107) Уравновешивание рядных двигателей.
- •108) Уравновешивание двухцилиндровых V-образных двигателей.
- •109) Уравновешивание V-образных двигателей.
- •110) Критерии уравновешенности двигателей.
- •111) Крутильные колебания.
- •112) Приведение крутильной системы силовой установки с комбинированным двигателем к эквивалентной.
- •113) Расчет собственных колебаний.
- •114) Расчет вынужденных колебаний.
- •115) Методы ограничения напряжений, вызванных крутильными колебаниями.
- •116) Гасители крутильных колебаний.
- •117-118) Технико-экономические требования, предъявляемые к двигателям машин наземного транспорта. Способы их удовлетворения.
- •119) Классификация конструкций двигателей.
- •120) Выбор параметров конструкций двигателя.
- •121) Расчетные режимы.
- •122) Порядок проектирования.
- •123) Автоматизированное проектирование.
- •124) Системы газораспределения четырех- и двухтактных двигателей.
- •125) Клапанные механизмы газораспределения.
- •126) Выбор профилей кулачков.
- •127) Кинематика и динамика современных кулачковых механизмов.
- •128) Применяемые материалы.
- •129) Органы газораспределения двухтактных двигателей.
- •130) Золотниковое газораспределение.
- •131) Системы пуска, смазывания транспортных и охлаждения.
- •132) Виды систем двигателя и их сравнение.
- •133) Основы расчета систем охлаждения.
- •134) Системы питания транспортных двигателей.
- •135-136) Классификация систем питания. Технико-экономическое сравнение двигателей, оснащенных различными системами питания.
- •137) Системы питания дизелей.
- •138) Виды топливных систем.
- •139) Топливные насосы, топливные форсунки.
- •140) Очистка топлива.
- •141) Системы питания многотопливных двигателей.
- •142) Основные направления развития систем питания топливных двигателей.
- •143) Управление работой транспортных двигателей.
- •144) Системы автоматического регулирования и управления двигателей.
- •145) Классификация, сравнение различных систем.
- •147) Методы проектирования ДВС.
- •148-152) Цифровое проектирование. Основные этапы проектирования. Техническое предложение. Техническое задание. Основные принципы разработки ТП и ТЗ.
- •153) Современные программные и аппаратные средства проектирования.
- •154) Преимущества и недостатки различных средств.
- •156) Комплексный расчет элементов КШМ.
- •157) Расчет коленчатого вала.
- •158) Расчет шатуна.
- •159) Расчет элементов ЦПГ.
- •160) Расчет ТНДС поршня, расчет ТНДС ГБЦ.
- •161) Особенности задачи ГУ.
- •163-166) Испытания силовых установок. Виды испытаний.
- •165) Типовые испытания.
- •166) Исследовательские испытания.
- •168) Определение часового и удельного расхода топлива.
- •169) Проведение типовых испытания для получения основных характеристик силовых установок.
- •170-171) Формирование облика современной лаборатории для проведения типовых и исследовательских испытаний силовых установок. Основное оборудование
- •172) Типы тормозных устройств.
- •173) Типы газоанализаторов.
- •174) Перспективы развития транспортных силовых установок.
- •175-176) Различные типы силовых установок. Преимущества и недостатки.
- •177) Связь и взаимозависимость транспортной и стационарной энергетических систем.
обеднению). Состав же смеси, при котором вследствие обогащения её топливом наступает явление невоспламеняемости, называется высшим пределом воспламеняемости (или пределом воспламеняемости по обогащению). Эти пределы зависят от свойств топлива и окислителя, а также от параметров состояния смеси (температуры, давления и др.). Пределы воспламеняемости выражаются в процентах концентрации топлива в горючей смеси по массе или по объёму. Можно выражать пределы воспламеняемости и через численные значения коэффициента избытка воздуха α. Так, для бензино-воздушных смесей при нормальных условиях низший предел воспламеняемости по массе колеблется между 1 и 5 %, что соответствует значениям α = 1,5…1,3, а высший предел воспламеняемости соответствует 14…18 % концентрации бензина по массе, или численным значениям α = 0,6…0,4
77) Особенности сгорания в дизелях.
В цилиндре дизеля при такте всасывания поступает воздух, который при следующем перемещении поршня (такт сжатия) сжимается до давления 25-60 кГ/см2. Температура воздуха в цилиндре при таком давлении поднимается до 650-750°С. В нагретый и сжатый воздух в конце такта сжатия насосами высокого давления с силой впрыскивается через форсунку топливо и в распыленном состоянии перемешивается с воздухом, образуя рабочую смесь, которая без постороннего источника воспламеняется и сгорает. Достижение таких высоких параметров воздуха в дизелях обеспечивается за счет высокой степени сжатия.
Процесс сгорания топлива в дизелях с воспламенением от сжатия обычно принято разделять на три фазы.
Первая фаза - период задержки воспламенения, или период предварительного окисления, который зависит от химического и фракционного состава топлива, от температуры и давления рабочей смеси в
камере сгорания. Повышение температуры воздуха к моменту впрыска топлива увеличивает его нагрев , в результате чего возрастает скорость испарения, улучшается самовоспламеняемость топлива, сокращается первый период. При повышении давления температура самовоспламенения снижается. Кроме того, при тонком распиливании повышается поверхностное испарение, происходит наиболее равномерное распределение топлива по объему цилиндра, что также вызывает сокращение первого периода.
Вторая фаза - период быстрого сгорания топлива и резкого нарастания давления, зависящий от количества топлива, впрыснутого в цилиндр, а также от скорости распространения пламени. Если при этом периоде интенсивность приращения давления не превышает 4-6 кГ/см2 за время поворота коленчатого вала на 1°, то принято считать, что
двигатель будет работать нормально.
Третья фаза - период замедленного регулируемого горения, зависящий от скорости подаваемого во времени топлива и от протекания первых двух фаз.
78) Кинетические и диффузионные фазы сгорания.
Горючие системы могут быть химически однородными и неоднородными. К химически однородным относятся системы, в которых горючее вещество и воздух равномерно перемешаны: смеси горючих газов, паров или пылей с воздухом. К химически неоднородным относятся системы, в которых горючее вещество и воздух не перемешаны и имеют поверхности раздела: твердые горючие материалы и жидкости, находящиеся в воздухе, струи горючих газов и паров, поступающие в воздух и т.д.
Таким образом, полное время сгорания химически неоднородной горючей системы складывается из времени, необходимого для возникновения физического контакта между горючим веществом и
кислородом воздуха
, и времени, затрачиваемого на протекание самой химической реакции
:
.
Вслучае гомогенного горения величина
называется временем смесеобразования, а в случае гетерогенного горения – временем транспортировки кислорода из воздуха к твердой поверхности горения.
Взависимости от соотношения
и
горение называется диффузионным или кинетическим. При горении химически неоднородных горючих систем время диффузии кислорода к горючему веществу несоизмеримо больше времени, необходимого для протекания химической
реакции, т.е.
>>
и практически
.
Это значит, что скорость горения определяется скоростью диффузии кислорода к горючему веществу. В этом случае говорят, что процесс протекает в диффузионной области. Такое горение и называется диффузионным. Все пожары представляют собой диффузионное горение.
Если время физической стадии процесса оказывается несоизмеримо меньше времени, необходимого для протекания химической реакции, т.е. 
<<
, то можно принять
. Скорость процесса практически определяется только скоростью химической реакции. Такое горение называется кинетическим. Так горят химически однородные горючие системы, в которых молекулы кислорода хорошо перемешаны с молекулами горючего вещества, и не затрачивается время на смесеприготовление. Так как скорость химической реакции при высокой температуре велика, горение таких смесей происходит мгновенно и носит характер взрыва. Если продолжительность химической реакции и физическая стадия процесса горения соизмеримы, то горение протекает в так называемой промежуточной области, в которой на скорость горения влияют как химические, так и физические факторы.
79) Нарушение нормального процесса сгорания.
Нарушения нормального процесса сгорания При некоторых условиях нормальный процесс сгорания может
нарушаться, что отражается на мощности и экономичности двигателя, на токсичности отработавших газов, на надежности и долговечности работы двигателя.
К таким нарушениям относятся следующие.
1. Пропуски вспышек в цилиндрах двигателя (перебои в работе двигателя). Появляются в результате сильного переобеднения или переобогащения топливовоздушной смеси, которая по составу смеси вышла за пределы воспламеняемости. Возможны также из-за малой мощности искры или её случайного пропуска в результате нарушений в работе системы зажигания.
2. Вспышки во впускном тракте двигателя (обратные вспышки). Имеют место при малой скорости распространения фронта пламени по объему цилиндра, когда горение смеси продолжается не только на такте расширения, но и на такте выпуска отработавших газов. В момент открытия впускного клапана пламя из цилиндра двигателя поджигает горючую смесь во впускной системе, что воспринимается как хлопок в карбюратор. Замедленное
