
- •1) Классификация тепловых двигателей.
- •2) Сравнение тепловых двигателей.
- •3) Краткая история развития поршневых двигателей.
- •4) Современный уровень развития транспортного двигателестроения.
- •5) Связь с глобальными проблемами современной цивилизации.
- •6) Экологическая и энергетическая проблемы.
- •7) Классификация поршневых двигателей.
- •8) Термодинамические циклы поршневых двигателей.
- •9) Рабочий процесс и индикаторная диаграмма 4-х тактных двигателей.
- •10) Рабочий процесс и индикаторная диаграмма 2-х тактных двигателей.
- •11) Работа, выполненная в цилиндре ДВС.
- •12) Цикл Карно и теорема Карно.
- •13) Обобщенный термодинамический цикл поршневых и комбинированных двигателей.
- •14) Циклы Отто, Дизеля и Тринклера. Их сравнительный анализ.
- •15) Основные схемы комбинированных двигателей (КДВС).
- •16) Термодинамический цикл КДВС с импульсной турбиной.
- •17) Термодинамический цикл КДВС с постоянным давлением перед турбиной.
- •18) Термодинамический цикл КДВС с промежуточным охлаждением надувочного воздуха.
- •19) Цикл Стирлинга.
- •20) Принцип действия двигателя с внешним подводом теплоты.
- •21) Роторно-поршневой двигатель (РПД) Ванкеля.
- •22) Бесшатунные двигатели Баландина и другие альтернативные кинематические механизмы, используемые в ДВС.
- •24) Основные виды топлив, применяемых в ДВС.
- •25) Альтернативные топлива.
- •26) Предпосылки и перспективы использования альтернативных топлив.
- •27) Теплота сгорания топлива и топливно-воздушной смеси.
- •28) Коэффициент избытка воздуха, коэффициент молекулярного изменения.
- •29) Коэффициент остаточных газов.
- •30) Коэффициент наполнения.
- •31) Особенности процесса наполнения в двухтактных двигателях.
- •32) Октановое число. Цетановое число.
- •34) Индикаторные и эффективные показатели ДВС.
- •35) Среднее индикаторное давление, индикаторная мощность, индикаторный КПД.
- •37) Механические потери двигателя, механический КПД.
- •38) Удельный индикаторный и эффективный расходы топлива.
- •39) Тепловой баланс двигателя.
- •40) Конструктивные, регулировочные и режимные параметры, влияющие на индикаторные и эффективные показатели двигателя.
- •41) Литровая и поршневая мощность.
- •42) Способы увеличения мощности двигателя.
- •43) Расчет рабочего процесса поршневых двигателей.
- •44-45) Цель и задачи расчета рабочего процесса. Прямая и обратная задачи.
- •46) Краткое изложение метода расчета В.И. Гриневецкого.
- •48) Тепловыделение и теплообмен в цилиндре поршневого двигателя.
- •49) Понятие двух- и многозонных моделей, необходимость их введения и сравнительный анализ.
- •50) Краткая характеристика современных программных комплексов, предназначенных для расчета рабочего процесса в ДВС.
- •51) Организация рабочего процесса в ДВС.
- •52) Основные типы камер сгорания.
- •53) Генерация вихря при впуске.
- •54) Интенсивность вихревого движения заряда в цилиндре дизеля.
- •55) Особенности вихревого движения в двигателе с непосредственным впрыскиванием бензина.
- •56) Расслоение заряда.
- •57) Неразделенные камеры сгорания с объемным смесеобразованием.
- •58) Полуразделенные камеры сгорания с объемно-пленочным смесеобразованием.
- •59) Разделенные камеры сгорания.
- •60) Сравнительный анализ различных типов камер сгорания.
- •61) Смесеобразование и сгорание в ДВС.
- •62) Подача топлива в ДВС.
- •63) Впрыскивание во впускной системе.
- •64) Впрыскивание в непосредственно в цилиндр.
- •65) Закон впрыскивания.
- •66) Динамика топливного факела.
- •67) Распад струй топлива по каплям.
- •68) Средний диаметр капель топлива.
- •69) Закон Розина-Рамлера.
- •70) Испарение капли в условиях камеры сгорания.
- •71) Период задержки воспламенения.
- •72) Протекание цепных реакции горения.
- •73) Тепловыделение.
- •74) Закон Вибе.
- •75) Другие законы тепловыделения.
- •76) Особенности сгорания двигателях с принудительным зажиганием.
- •77) Особенности сгорания в дизелях.
- •78) Кинетические и диффузионные фазы сгорания.
- •79) Нарушение нормального процесса сгорания.
- •80) Детонация.
- •81) Преждевременное воспламенение.
- •82) Калильное зажигание.
- •83) Турбулентность в камере сгорания.
- •84) Тепловой баланс ДВС. Теплообмен в ДВС.
- •85) Тепловой баланс ДВС.
- •86) Нестационарный сложный (радиационно-конвективный) теплообмен в камере сгорания.
- •87) Осредненный (по поверхности КС) коэффициент теплоотдачи.
- •88) Локальный теплообмен в КС.
- •89) Теплообмен в системе охлаждения. взаимосвязи.
- •90) Характеристики транспортных двигателей.
- •91) Требования к характеристикам транспортных двигателей.
- •92) Устойчивость режима работы.
- •93) Скоростные, нагрузочные, регулировочные, регуляторные, винтовые и специальные характеристики комбинированных двигателей.
- •94) Экологические характеристики ДВС.
- •95) Способы улучшения характеристик комбинированных двигателей.
- •96) Моделирование характеристик двигателей.
- •97) Виды кинематических механизмов, преобразующих поступательное движение поршня во вращательное движение вала
- •98) Кинематика нормального и дезаксиального кривошипно-шатунного механизма.
- •99) Силы, действующие в кривошипно-шатунном механизме.
- •100) Расчет сил, действующих в КШМ.
- •101) Построение диаграммы крутящего момента на коренные шейки вала двигателя.
- •102) Уравновешивание поршневых двигателей.
- •103) Неуравновешенные силовые факторы.
- •104) Способы уравновешивания сил и моментов в поршневых двигателях.
- •105) Уравновешивание одноцилиндровых двигателей.
- •106) Метод Ланчестера.
- •107) Уравновешивание рядных двигателей.
- •108) Уравновешивание двухцилиндровых V-образных двигателей.
- •109) Уравновешивание V-образных двигателей.
- •110) Критерии уравновешенности двигателей.
- •111) Крутильные колебания.
- •112) Приведение крутильной системы силовой установки с комбинированным двигателем к эквивалентной.
- •113) Расчет собственных колебаний.
- •114) Расчет вынужденных колебаний.
- •115) Методы ограничения напряжений, вызванных крутильными колебаниями.
- •116) Гасители крутильных колебаний.
- •117-118) Технико-экономические требования, предъявляемые к двигателям машин наземного транспорта. Способы их удовлетворения.
- •119) Классификация конструкций двигателей.
- •120) Выбор параметров конструкций двигателя.
- •121) Расчетные режимы.
- •122) Порядок проектирования.
- •123) Автоматизированное проектирование.
- •124) Системы газораспределения четырех- и двухтактных двигателей.
- •125) Клапанные механизмы газораспределения.
- •126) Выбор профилей кулачков.
- •127) Кинематика и динамика современных кулачковых механизмов.
- •128) Применяемые материалы.
- •129) Органы газораспределения двухтактных двигателей.
- •130) Золотниковое газораспределение.
- •131) Системы пуска, смазывания транспортных и охлаждения.
- •132) Виды систем двигателя и их сравнение.
- •133) Основы расчета систем охлаждения.
- •134) Системы питания транспортных двигателей.
- •135-136) Классификация систем питания. Технико-экономическое сравнение двигателей, оснащенных различными системами питания.
- •137) Системы питания дизелей.
- •138) Виды топливных систем.
- •139) Топливные насосы, топливные форсунки.
- •140) Очистка топлива.
- •141) Системы питания многотопливных двигателей.
- •142) Основные направления развития систем питания топливных двигателей.
- •143) Управление работой транспортных двигателей.
- •144) Системы автоматического регулирования и управления двигателей.
- •145) Классификация, сравнение различных систем.
- •147) Методы проектирования ДВС.
- •148-152) Цифровое проектирование. Основные этапы проектирования. Техническое предложение. Техническое задание. Основные принципы разработки ТП и ТЗ.
- •153) Современные программные и аппаратные средства проектирования.
- •154) Преимущества и недостатки различных средств.
- •156) Комплексный расчет элементов КШМ.
- •157) Расчет коленчатого вала.
- •158) Расчет шатуна.
- •159) Расчет элементов ЦПГ.
- •160) Расчет ТНДС поршня, расчет ТНДС ГБЦ.
- •161) Особенности задачи ГУ.
- •163-166) Испытания силовых установок. Виды испытаний.
- •165) Типовые испытания.
- •166) Исследовательские испытания.
- •168) Определение часового и удельного расхода топлива.
- •169) Проведение типовых испытания для получения основных характеристик силовых установок.
- •170-171) Формирование облика современной лаборатории для проведения типовых и исследовательских испытаний силовых установок. Основное оборудование
- •172) Типы тормозных устройств.
- •173) Типы газоанализаторов.
- •174) Перспективы развития транспортных силовых установок.
- •175-176) Различные типы силовых установок. Преимущества и недостатки.
- •177) Связь и взаимозависимость транспортной и стационарной энергетических систем.

-отработка качественного рабочего процесса в камере неблагоприятной формы;
-обеспечение герметичности уплотнения рабочих объемов;
-отработка конструкции корпусных деталей, обеспечивающих работу без коробления в условиях неравномерного их нагрева.
Врезультате огромной проделанной научно-исследовательской и опытно-конструкторской работы этим фирмам удалось решить почти все наиболее сложные технические задачи на пути создания РПД и выйти на этап их промышленного производства.
22) Бесшатунные двигатели Баландина и другие альтернативные кинематические механизмы, используемые в ДВС.
Бесшатунный двигатель Баландина.
Основная идея бесшатунного двигателя заключается в минимизации боковых нагрузок на стенки цилиндра и упрощение изготовления ЦПГ как следствие.

1 — поршневой шток; 2 — коленчатый вал; 3 — подшипник кривошипа; 4 — кривошип; 5 — вал отбора мощности; 6 — поршень; 7 — ползун штока; 8 — цилиндр
Функции шатунов выполняют поршневые штоки 1, жестко связанные с поршнями 6 и охватывающие шейки коленчатого вала 2. На каждом штоке по обеим сторонам подшипника выполнены ползуны, которые скользят по направляющим в картере, полностью разгружая поршень и цилиндр от боковых усилий. В результате поршень превращается просто в обойму для поршневых колец, которые герметизируют стык «поршень — цилиндр». Поэтому допуски на размеры поршня могут быть менее жесткими.

На рисунке показана четырехцилиндровая секция бесшатунного двигателя, но возможны конструкции с 8, 12 и 16 цилиндрами. Угол между цилиндрами 8 из-за особенностей кинематической схемы допустим любой, кроме 0 и 180°, так как невозможно получить конструкции, где цилиндры расположены в один ряд или оппозитно. Нет препятствий для создания низкого компактного мотора с крестообразным, Х-образным или V-образным расположением цилиндров.
Коленчатый вал 2 бесшатунного двигателя вращается на подшипниках 3, смонтированных в кривошипах 4. Они через зубчатые венцы на их щеках передают крутящий момент на шестерни так называемого синхронизирующего вала 5, который может служить и для съема мощности.
Преимущества: компактность (при прочих равных), выше КПД (0,95 против 0,86), выше моторесурс и долговечность.
Роторно-поршневой двигатель Ванкеля
Смотри вопрос выше.
Аксиальный двигатель с качающейся (косой) шайбой
Основная идея в размещении цилиндров параллельно вокруг приводного вала.

Вращение вала происходит за счёт шайбы, плоскость которой находится под некоторым углом к основному валу. На эту шайбу поочерёдно давят цилиндры, преобразовывая таким образом поступательное движение во вращательное.
Аналогичную конструкцию предложили и в СССР (двигатель Старостина), поставив шайбу перпендикулярно оси вращения приводного вала, но сделав её рабочую поверхность «волнообразной». Цилиндры напротив попарно размещались во впадинах и в выступах шайбы.
Данные двигатели нашли применения в торпедах.
Двигатель Требента.
Двигатель Требента по своей сути представляет аксиальный двигатель, в котором вместо шайбы установлено n конических зацеплений равное количеству цилиндров. Кривошипно-шатунный механизм каждого цилиндра передаёт момент на коническое ЗК, которое через зацепление передаёт момент на коническое ЗК
Минус данной конструкции в том, что она не даёт выигрыша по боковой нагрузке на поршень и цилиндр, а также добавляет значительное количество зубчатых зацеплений, по сравнению с другими аксиальными двигателями.