
- •1 Билет
- •1. Операционная система как расширенная виртуальная машина и как система управления ресурсами. Описание, решаемые задачи.
- •Ос как система управления ресурсами
- •21. Физическая структура и особенности fat и ntfs.
- •41. Аутентификация с использованием паролей. Принцип действия, варианты реализации, недостатки.
- •2 Билет
- •2. Типы ресурсов вычислительной системы и особенности управления ими.
- •22. Физическая структура и особенности s5 и ufs.
- •42. Угрозы преодоления парольной защиты. Требования к паролям для увеличения их стойкости.
- •3 Билет
- •3. Критерии эффективности работы операционных систем и классификация операционных систем на основе этих критериев.
- •23. Организация статических и динамических вызовов в операционной системе.
- •43. Аутентификация при помощи физического объекта. Принцип действия, варианты реализации, недостатки.
- •4 Билет
- •4. Функциональные подсистемы операционной системы. Основные задачи, решаемые каждой из подсистем.
- •24. Понятие процесса и потока. Различия в использовании процессов и потоков. Контекст процесса.
- •44. Технология однократного входа (sso – Single Sign-on). Принцип действия, преимущества и недостатки. Применение физического объекта в технологии sso.
- •5 Билет
- •5. Типы ядра операционной системы. Описание и особенности каждого типа.
- •25. Создание и уничтожение процессов и потоков. Дескрипторы процессов и потоков.
- •45. Аутентификация при помощи биометрических систем. Принцип действия, варианты реализации, недостатки.
- •6 Билет
- •6. Подсистема управления памятью. Типы адресов. Виртуальное адресное пространство и его структура. Разделяемая и неразделяемая память.
- •26. Планирование потоков. Стратегии и дисциплины планирования. Состояния потока.
- •46. Методы биометрической аутентификации.
- •7 Билет
- •7.Виртуальная память. Определение, принципы работы, решаемые задачи.
- •27. Алгоритмы планирования потоков, основанные на квантовании.
- •47. Принципы дискреционного управления доступом. Преимущества и недостатки дискреционной модели.
- •8 Билет
- •8. Учёт использования памяти. Описание способов учёта.
- •28. Алгоритмы планирования потоков, основанные на приоритетах.
- •48. Реализация дискреционного механизма управления доступом в Windows и unix-системах.
- •9 Билет
- •9. Страничное распределение памяти. Принцип работы, преобразование адресов.
- •29. Смешанные алгоритмы планирования потоков.
- •49. Принципы мандатного управления доступом. Преимущества и недостатки мандатной модели.
- •10 Билет
- •10.Сегментное распределение памяти. Принцип работы, преобразование адресов.
- •30. Наследование ресурсов. Преимущества и недостатки различных вариантов наследования.
- •50. Основные права доступа к файловым объектам в ос Windows.
- •11 Билет
- •11. Сегментно-страничное распределение памяти. Принцип работы, преобразование адресов.
- •31. Способы межпроцессного обмена сообщениями. Принципы работы именованных и неименованных каналов. Принципы работы сигналов.
- •51. Владелец файла и его возможности. Подходы к назначению владельца файла.
- •12 Билет
- •12. Рабочий набор, его использование для выбора вытесняемой страницы.
- •32. Синхронизация процессов и потоков. Решаемые задачи. Используемые средства. Критические области.
- •52. Классификация субъектов и объектов доступа.
- •13 Билет
- •13. Кэширование данных. Принципы работы. Согласование данных при кэшировании.
- •33. Семафоры, мьютексы.
- •53. Правила наследования прав доступа к иерархическим объектам в ос Windows. Приоритеты правил наследования.
- •14 Билет
- •14. Типы и механизм прерываний. Обработчики прерываний. Приоритезация и маскирование прерываний.
- •34. Тупиковые ситуации. Определение, условия возникновения. Стратегии, используемые относительно взаимоблокировок.
- •54. Способы обеспечения замкнутости программной среды. Достоинства и недостатки этих методов.
- •15 Билет
- •15. Структура и функции подсистемы ввода-вывода. Принципы работы диспетчера ввода-вывода и диспетчера Plug’n’Play.
- •35. Измерение и контроль производительности операционных систем.
- •55. Уровни безопасности и правила политики ограниченного использования программ в ос Windows. Приоритеты использования правил.
- •16 Билет
- •16. Особенности многоуровневого представления драйверов и работы с ними.
- •36. Реестр. Чтение и изменение реестра. Логическая структура реестра. Назначение основных разделов. Физическая структура реестра.
- •56. Способы разграничения доступа к устройствам. Типы прав доступа к устройствам.
- •17 Билет
- •17. Логическая структура файловой системы. Атрибуты файлов и способы их хранения.
- •37. Основные группы механизмов защиты операционных систем; основные функции этих механизмов.
- •57. Белый список устройств и способы его применения.
- •18 Билет
- •18. Физическая структура файловой системы. Кластер. Функции главной загрузочной записи.
- •38. Процедуры идентификации, аутентификации, авторизации. Определение, принцип действия.
- •58. Аудит в операционных системах. Задачи аудита.
- •19 Билет
- •19. Физическая организация файла с использованием перечня номеров кластеров и экстентов.
- •39. Функции аутентификации по контролю доступа при работе с ос и при настройке ос.
- •59.События, подвергаемые аудиту в ос Windows. Данные, фиксируемые при аудите.
- •20 Билет
- •20.Дисковые квоты. Резервное копирование.
- •40. Факторы аутентификации – определение, типы, примеры. Многофакторная аутентификация – определение, примеры.
- •60. Задачи, решаемые с использованием оснастки «Анализ и настройка безопасности» в Windows.
52. Классификация субъектов и объектов доступа.
13 Билет
13. Кэширование данных. Принципы работы. Согласование данных при кэшировании.
Кэш-память – способ совместного функционирования двух типов запоминающих устройств (ЗУ). Данный способ позволяет уменьшить среднее время доступа к данным за счёт копирования данных из более медленного ЗУ (основная память) в более быстрое.
Принцип работы:
Кэш-память – совокупность записей обо всех загруженных из основной памяти элементах. Записи включают:
значение элемента данных;
адрес, который этот элемент имеет в основной памяти;
проверка действительности данных (для алгоритма замещения данных. Признак модификации, признак действительности данных).
Схема функционирования кэш-памяти:
При каждом обращении к основной памяти по физическому адресу просматривается содержимое кэш-памяти с целью определения, не находятся ли там нужные данные. Кэш-память не является адресуемой, поэтому поиск нужных данных осуществляется по значению поля адреса. Далее возможен один из двух вариантов развития событий:
· если данные обнаруживаются в кэш-памяти, то есть произошло кэш-попадание, они считываются из нее и результат передается источнику запроса;
· если нужные данные отсутствуют в кэш-памяти, то есть произошел кэш-промах, они считываются из основной памяти, передаются источнику запроса и одновременно с этим копируются в кэш-память.
Временная локальность – после обращения к какому-либо адресу в оперативной памяти существует высокая вероятность того, что в ближайшее время произойдёт обращение к этому же адресу. • Следствие: в кэш обязательно записываются данные, расположенные по запрашиваемому адресу
Пространственная локальность – после обращения к какому-либо адресу в оперативной памяти существует высокая вероятность того, что в ближайшее время произойдёт обращение к соседним адресам. • Следствие: в кэш записываются данные, расположенные по запрашиваемому и соседним адресам.
Вытеснение данных из кэшпамяти –
• Если данные не изменялись, то запись объявляется свободной путём сброса признака действительности.
• Если данные изменялись, то происходит их копирование в основную память и запись объявляется свободной.
• Сброшенное значение признака действительности позволяет заносить в эту запись новые данные.
Согласование данных в кэше и основной памяти:
При записи данных в основную память просматривается кэш, если в кэше эти данные отсутствуют, то запись идёт только в основную память. (речь про перезаписывание!)
Сквозная запись – запись проводится и в кэш, и в основную память.
Обратная запись – запись проводится только в кэш и устанавливается признак модификации. Выгрузка модифицированных данных может осуществляться в первую очередь во время замещения или в фоновом режиме.
33. Семафоры, мьютексы.
Мьютекс – переменная, которая может находиться в одном из двух состояний: блокированном или неблокированном.
Мьютекс отличается от семафора тем, что только владеющий им поток может его освободить, т.е. перевести в открытое состояние. Мьютексы - это семафорный механизм для организации взаимного исключения. Основное назначение - организация взаимного исключения для потоков из одного и того же или из разных процессов.
Семафор – примитив синхронизации процессов и потоков, в основе которого лежит счётчик, над которым можно производить две атомарные операции: увеличение и уменьшение значения на единицу, при этом операция уменьшения для нулевого значения счётчика является блокирующейся. Служит для построения более сложных механизмов синхронизации и используется для синхронизации параллельно работающих задач, для защиты передачи данных через разделяемую память (память, видимая более чем одному процессу).