 
        
        Насосы / ПОСОБИЕ Насосы АЭС
.pdf 
Тогда проекция скорости c2 на окружное направление:
| c | u | 2 | 
 | L | 12000 109,54 м. | 
| 2u | 
 | 
 | T | с | |
| 
 | 
 | 
 | 
 | 
 | 
Из треугольников скоростей:
| c | 
 | c2 | c2 | 
 | 109,542 202 | 111,35 м. | 
| 
 | 2 | 2u | 2r | 
 | 
 | с | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
Значение степени реактивности θ для этого варианта колеса:
| θ 1 | c2 | c | 2 | 1 | 111,352 202 | 0,5. | 
| 2 | 1 | 2 12000 | ||||
| 
 | 2 L | 
 | 
 | 
 | ||
| 
 | 
 | T | 
 | 
 | 
 | 
 | 
3.4. Определение напора насоса по показаниям приборов
Задача № 3.4.1
При испытании насоса получили следующие данные: объемную подачу Q = 6,5 л/с, показания вакуумметра Ввх = 294 мм.рт.ст., показания манометра Мвых = 0,35 МПа, крутящий момент на валу Мкр = 41 Н м при скорости вращения колеса насоса n = 800 об/мин. Скорости с1 и с2 равны. Найти мощность, потребляемую насосом Nпотр, полезную мощность Nпол и КПД насоса ηн.
Пояснения к решению задачи:
На входе в насос находится вакуумметр, а на выходе – манометр (см. рис. 3.4.1). Скорость воды на входе в насос c1, а на выходе – c2.
Рис. 3.4.1
Решение
Напор Н определяется из уравнения Бернулли:
| 
 | 
 | 
 | p | 
 | c2 | 
 | 
 | 
 | p | 
 | c2 | H H. | |
| 1 | 1 | 1 | 2 | 2 | 2 | ||||||||
| ρg | 2g | ρg | 2g | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
61
 
Поскольку c1 = c2, Z1 = Z2 = 0 и ∆Н = 0, то напор, развиваемый насосом равен:
H ρpg2 ρpg1 1g (M Bвх ).
H 1014 (0,35 106 0,294 10 13,6 103) 39 м.
При этом учтено, что вакуумметр показывает разряжение, а манометр избыточное давление.
Т.е.
p2 Mвых Pатм ; p1 Pатм Ввх.
Полезная мощность насоса:
Nпол ρgQH 104 6,5 10 3 39 2535 Вт.
Мощность, потребляемая насосом:
Nпотр Mкрω Mкр 2π n 41 80060 2π 3435 Вт.
Здесь ω – скорость вращения колеса насоса в радианах. КПД насоса определяется зависимостью:
ηН Nпол 2535 0,738.
Nпотр 3435
Задача № 3.4.2
Центробежный насос, приведенный на рисунке 3.4.2, прошел испытания при объемной подаче Q = 250 л/с. При этом по показаниям вакуумметра Рвх = 0,4 кг/см2, по показаниям манометра Рвых = 3,3 кг/см2.
Диаметры всасывающего и напорного патрубков одинаковы. Высота hпр = 0,8 м. Мощность, забираемая электродвигателем из сети Nэ = 128 кВт. КПД электродвигателя ηэ = 0,95. Найти полезную мощность Nпол, КПД насоса ηн и насосного агрегата ηна.
Решение
Величина напора Н определяется из уравнения Бернулли:
H М h2 h B h1 c222gc12 М B Ζ c222gc12 .
Обозначим (h2 h) h1 , т.е. Z=hпр; М Pρвыхg ;В ρPвхg . Тогда выражение для напора:
H ρ1g (Pвых Pвх ) 33 4 0,8 37,8 м.
62
 
Рис. 3.4.2
Полезная мощность насоса:
Nпол ρgQH 1000 9,8 250 10 3 37,8 92610 Вт 92,61кВт.
Мощность на валу:
NВ Nэηэ 128 103 0,95 121600 Вт 121,6 кВт.
КПД насоса:
ηН Nпол 92,61 0,762.
Nв 121,6
КПД насосного агрегата:
ηна Nпол 92,61 0,724.
Nэ 128
Задача № 3.4.3
При испытании центробежного насоса (см. рис. 3.4.2.) за 720 секунд расход жидкости составил G = 87,6 м3. При этом по показаниям вакуумметра Рвх = 0,42 кг/см2, по показаниям манометра Рвых = 10,2 кг/см2. Диаметр всасывающего патрубка dвс = 300 мм, а напорного патрубка dнап = 250 мм. Высота hпр = 0,64 м. Расход электроэнергии за 12 мин 10 с составил 31,4 кВт ч.
Определить полезную мощность насоса Nпол, мощность, забираемую из сети Nэ и КПД насосного агрегата ηна.
63
 
Решение
Из уравнения Бернулли напор по показаниям манометра и вакуумметра:
H М h2 h B h1 c222gc12 М B c222gc12 . Здесь М и В в [м].
М Pρвыхg ; В ρPвхg ; Z = hпр.
Объемная подача:
| Q | G | 
 | 87,6 | 0,122 | м3 | . | |
| 720 | 720 | с | |||||
| 
 | 
 | 
 | 
 | 
Скорости c1 и c2 определяются по уравнению неразрывности.
| 
 | 
 | c | 
 | 
 | Q 4 | 
 | 
 | 
 | 0,122 4 | 
 | 
 | 1,727 | м | ; | ||
| 
 | 
 | 
 | πd 2 | 
 | 3,14 0,32 | с | ||||||||||
| 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | c | 
 | Q 4 | 
 | 
 | 
 | 0,122 4 | 
 | 2,487 м. | ||||||
| 
 | 
 | 
 | πd22 | 3,14 0,252 | 
 | |||||||||||
| 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | с | ||||||||
| Тогда напор, создаваемый насосом: | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c2 c2 | 
 | ||
| 
 | 
 | H | 
 | 
 | (P P ) 2 | 1 | 
 | |||||||||
| 
 | 
 | 
 | ρg | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | вых | 
 | вх | 
 | 2g | 
 | 
 | ||||
| 
 | 1 | 10,2 0,42 | 
 | 
 | 
 | 5 | 
 | 
 | 2,4872 1,7272 | |||||||
| 
 | 
 | 10 | 
 | 0,64 | 
 | 2 10 | 107,0 м. | |||||||||
| 1000 10 | 
 | 
 | ||||||||||||||
Полезная мощность насоса:
Nпол gρQH 10 1000 0,122 107,0 13054 Вт 130,54 кВт.
Мощность, забираемая из сети:
Nэ Э 31,4 3600 157,0 кВт. Т 720
КПД насосного агрегата:
ηна Nпол 130,54 0,831.
Nэ 157,0
3.5. Применение теории подобия в расчетах при проектировании насосов. Пересчет характеристик насосов
Задача № 3.5.1
При работе насоса были повреждены выходные кромки лопаток в результате задевания рабочего колеса. Для исправления колесо было проточено и его диаметр уменьшился на 3%, а выходной угол увеличился на 1˚.
64
 
Для исходного колеса насоса (c2r/u2)м = 0,195, β2м = 18°.
Скорость вращения колеса насоса после ремонта не изменилась. Определить во сколько раз изменится напор и подача насоса.
Рис. 3.5.1
Решение
Таким образом, после ремонта отношение наружного диаметра колеса после ремонта и исходного колеса:
d2 0,97. d2м
Угол выхода потока из отремонтированного колеса: β2 β2м 1 18 1 19.
Скорость вращения колеса осталась неизменной. Поэтому для пересчета подачи используем следующую зависимость в соответствии с теорией подобия, учитывая влияния изменения угла β2:
| 
 | 
 | 
 | d2 | 3 | 
 | 
| Q | λ3 | 
 | 
 | 0,973 0,913. | |
| Qм | 
 | ||||
| 
 | d2м | 
 | |||
Оценим влияние изменения β2. Отношение расходных составляющих абсолютных скоростей потока на выходе из колес:
| 
 | c | 
 | w sinβ | 2 | 
 | 
 | u | 2 | sinβ | 2 | 
 | 
 | 
 | d | 2 | sinβ | 2 | 
 | 0,97 sin190 | ||||||
| 
 | 2r | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 1,02. | |||||||
| 
 | c | w | sinβ | 
 | u | 
 | 
 | sinβ | 
 | 
 | 
 | d | 
 | 
 | sinβ | 
 | |||||||||
| 
 | 
 | 2м | 2м | 2м | 2м | 2м | sin18 | 
 | |||||||||||||||||
| 
 | 2rм | 
 | 2м | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| С учетом того, что: | w2 | 
 | 
 | 
 | u2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | , u πdn . | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | w2м | u2м | 
 | 
 | 
 | |||||||||||||
65
 
Тогда отношение подач для отремонтированного и исходного колеса составит:
Q Q 1,02 0,913 1,02 0,931.
Qм Qм
Отношение напоров для отремонтированного и исходного колеса составит:
| 
 | 
 | 
 | H | 
 | 
 | 
 | 
 | 
 | 
 | u22(1 | c2r | 
 | ctgβ2) | 
 | 
 | u22(1 c2rм | sinβ2 ctgβ2) | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u | 2м | sinβ | 2м | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | Hм | 
 | 
 | 2 | c2rм | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | c2rм | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | u2м(1 | u2м | 
 | ctgβ2м) | u2м(1 | u2м | ctgβ2м) | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,195 | cosβ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cos190 | 
 | 
 | |||||||
| 
 | 
 | d2 | 2 | 
 | 
 | 1 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 1 0,195 | 0 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | sinβ2м | 0,97 | 2 | 
 | 
 | 
 | 
 | 
 | sin18 | 
 | 0,949, | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | (1 0,195 ctgβ2м) | 
 | 1 | 0,195 ctg180 | |||||||||||||||||||||||
| 
 | d2м | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| где | c2r c2rм | 
 | 
 | sinβ2 . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | u2 | u2м | 
 | sinβ2м | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
Задача № 3.5.2
Рассчитать геометрические характеристики насоса (диаметр колеса на выходе d2 и длину лопатки l2), используя метод моделирования. Для реального насоса подача должна быть равна Q = 2,7 м3/мин, напор H не менее 20 м, скорость вращения колеса насоса n = 50 с–1. Для модельного насоса подача равна Qм = 6,7 м3/мин, скорость вращения колеса насоса nм = 50 с–1.
Размеры модельного насоса: d2м = 0,220 м, l2м = 0,02м, β2м = 200, ψ2 = 0,96.
Решение
Из уравнения Эйлера определим значение напора для модельного насоса:
| 
 | u2 | 
 | 
 | C | 2rм | 
 | 
 | 34,562 | 
 | 
 | 8,42 | 
 | 0 | 
 | 
 | 
| Hм | 2м 1 | 
 | 
 | ctgβ2м | 
 | 9,8 | 1 | 
 | 34,56 | ctg20 | 
 | 
 | 40,295м, | ||
| u2м | 
 | ||||||||||||||
| 
 | g | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
Где окружная скорость на внешнем диаметре модельного колеса: u2м πd2мn π 0,22 50 34,56 мс ,
а расходная составляющая скорости потока на выходе из модельного колеса насоса из уравнения неразрывности:
| c | 
 | 
 | Qм | 
 | 
 | 
 | 
 | 6,7 | 8,42 | м. | 
| πd | l | ψ | 
 | π 0,22 | 0,02 60 0,96 | |||||
| 2rм | 
 | 2 | 
 | 
 | с | |||||
| 
 | 
 | 
 | 2м 2м | 
 | 
 | 
 | 
 | 
 | 
 | 
Здесь ψ – коэффициент стеснения, учитывающий уменьшение реальной площадивыходапотокаизколесаиз-заопределеннойтолщинылопаток.
66
 
Найдем коэффициент пропорциональности λ и найдем наружный диаметр колеса из соотношения подач.
| Q | λ3 | n | , | |
| Q | n | |||
| 
 | 
 | |||
| м | 
 | м | 
 | 
где λ = d2/d2м. Поскольку n = n2м
| d2 d2м 3 | Q | 0,22 3 | 2,7 | 0,162 м. | 
| Q | 6,7 | |||
| 
 | м | 
 | 
 | 
 | 
| При этом значении d2 | определим напор по зависимости теории по- | |||||||||||||||
| 
 | H | λ | 2 | n | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| добия: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| H | 
 | 
 | n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | м | 
 | 
 | 2м | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | d | 2 | 2 | 
 | 0,162 2 | 
 | |
| 
 | 
 | 
 | H Hмλ | 
 | Hм | 
 | 
 | 
 | 40,295 | 
 | 21,85 м. | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | d2м | 
 | 0,220 | 
 | ||||
Условие задачи выполняется. Определим длину лопатки. Поскольку l2/d2 = l2м/d2м, то
l2 d2 l2м 0,162 0,02 0,0147 м. d2м 0,22
Задача № 3.5.3
Определить наружный диаметр колеса насоса d2, если его подача Q = 23,18 м3/с, напор H = 100 м, скорость вращения колеса насоса n = 450 об/мин.
Решение
Для данного насоса рассчитывается коэффициент быстроходности:
| n 3,65 n | Q 3,65 450 | 23,18 250. | |
| s | H 3 4 | 1003 4 | 
 | 
| 
 | 
 | ||
В справочнике находим параметры насоса, имеющего такой же коэффициент быстроходности: Q0 = 1,5 м3/с, H0 = 50м, n0 = 400 об/мин, d20 = 0,5 м.
Тогда коэффициент пропорциональности:
| n0 | H | 
 | 400 | 100 | 1,257. | 
| 
 | 450 | 50 | |||
| n | H0 | 
 | |||
Наружный диаметр насоса:
d2 d20 λ 0,5 1,257 0,6285 м.
67
 
| 
 | Задача № 3.5.4 | 
 | 
| 
 | Известны действительные характеристика вентилятора Р = f | (Q) и | 
| N = | f (Q) (см. табл. 3.5.1 и рис. 3.5.2). Плотность газа ρ | = 1,2 | 
| кг/м3 | , скорость вращения колеса n = 150 с–1, наружный диаметр | |
колеса d2 = 0,4 м. Построить характеристики η= f (Q), РI= f (Q´), NI= f (Q´) и
| ηI= | f (Q´) геометрически подобного вентилятора при ρ´ = 0,98 | 
| кг/м3 | ,d´2 =0,5м,n´ =100с–1. | 
Решение
Проводится пересчет параметров работы вентилятора по зависимостям теории подобия с учетом изменения плотности газа, скорости вращения колеса и наружного диаметра колеса. Зависимость, связывающая значение подачи нового вентилятора и исходного:
| 
 | 
 | 
 | Qλ | 3 n | 
 | 
 | 
 | 
 | d2 | 3 | n | 
 | 
 | 
 | 0,5 3 | 
 | 
 | 100 | 
 | 
 | ||||||||||||||||
| 
 | Q | 
 | 
 | n | Q | 
 | 
 | n | 
 | Q | 
 | 
 | 
 | 
 | 
 | 
 | 150 | 1,302 Q. | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | d2 | 
 | 
 | 
 | 
 | 
 | 0,4 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | Зависимость, связывающая значение давления нового вентилятора | |||||||||||||||||||||||||||||||||||
| и исходного: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 0,5 | 2 | 
 | 100 | 
 | 
 | 2 | 
 | 0,98 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | p pλ | n | 
 | ρ | 
 | 
 | 
 | 
 | 
 | 0,567p. | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | n | 
 | 
 | ρ | p | 
 | 
 | 
 | 
 | 150 | 
 | 
 | 
 | 1,2 | 
 | 
 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | Зависимость, связывающая значение мощности нового вентилятора | |||||||||||||||||||||||||||||||||||
| и исходного: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 0,5 | 5 | 
 | 
 | 100 | 
 | 
 | 3 | 
 | 0,98 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | N | Nλ | n | 
 | ρ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,738 N. | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | n | 
 | 
 | ρ | N | 
 | 
 | 
 | 
 | 
 | 150 | 
 | 
 | 
 | 
 | 
 | 1,2 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | КПД исходного вентилятора определится по зависимости: | 
 | ||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | η | Nпол | 
 | 
 | 
 | 
 | pQ | . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | N | 
 | 
 | 
 | 
 | 
 | N | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | КПД нового геометрически подобного вентилятора определится по | |||||||||||||||||||||||||||||||||||
| зависимости: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Nпол | 
 | 
 | 
 | p Q | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | η | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | N | 
 | 
 | 
 | 
 | N | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | Результаты расчета приведены в табл.3.5.1 и на рис.3.5.2. | 
 | ||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4800 | 
 | 
 | Таблица 3.5.1 | ||||
| 
 | Q, м3/час | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2000 | 
 | 
 | 
 | 4000 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6000 | 
 | 8000 | ||||||||
| 
 | P, Па | 
 | 540 | 
 | 
 | 
 | 
 | 
 | 
 | 435 | 
 | 
 | 
 | 465 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 480 | 
 | 
 | 475 | 
 | 410 | ||||||
| 
 | N, кВт | 
 | 0,4 | 
 | 
 | 
 | 
 | 
 | 
 | 0,60 | 
 | 
 | 
 | 0,92 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1,1 | 
 | 
 | 1,42 | 
 | 1,98 | ||||||
| 
 | η | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,403 | 
 | 
 | 0,562 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,582 | 
 | 
 | 0,558 | 
 | 0,460 | |||||||||
| 
 | Q´, м3/час | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2604 | 
 | 
 | 
 | 5208 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6249,6 | 
 | 
 | 7812 | 
 | 10416 | ||||||||
| 
 | P´, Па | 
 | 306,2 | 
 | 
 | 
 | 
 | 
 | 246,6 | 
 | 
 | 263,7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 272,2 | 
 | 
 | 269,3 | 
 | 232,5 | |||||||||||
| 
 | N´, кВт | 
 | 0,295 | 
 | 
 | 
 | 
 | 
 | 0,443 | 
 | 
 | 0,679 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,812 | 
 | 
 | 1,048 | 
 | 1,461 | |||||||||||
| 
 | η´ | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,403 | 
 | 
 | 0,562 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0,582 | 
 | 
 | 0,558 | 
 | 0,460 | |||||||||
68
 
Рис. 3.5.2
Задача № 3.5.5
Известна характеристика насоса Н = f (Q) и КПД насоса ηн = f (Q) при скорости вращения колеса n = 1 500 об/мин (см. рис. 3.5.3). Плотность перекачиваемой жидкости ρ = 1 000 кг/м3.
1.Построить характеристики данного насоса при новой скорости вращения колеса, равной 3 000 об/мин и 1 000 об/мин.
2.Построить зависимость потребляемой мощности насоса Nпотр в зависимости от подачи при n = 1 500 об/мин и n = 3 000 об/мин.
Рис. 3.5.3
69
 
Решение
Обозначим характеристики насоса для скорости вращения колеса насоса 1 500 об/мин: Q, Н, n, Nпотр; для скорости вращения колеса насоса 1 000 об/мин: Q', Н', n', N'потр; для скорости вращения колеса насоса
3000 об/мин: Q'', Н'', n'', N''потр.
Пересчет напора и подачи проводится по зависимостям теории подобия. КПД насоса ηн при пересчете параметров остается неизменным.
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | ηн ηн ηн. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 2 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | n | ||||||
| n | 
 | 
 | 
 | 
 | 
 | 
 | n | ;Q Q | 
 | . | ||||||||
| H H | 
 | 
 | ;H H | 
 | 
 | ; Q Q | 
 | n | ||||||||||
| n | 
 | 
 | 
 | 
 | n | 
 | 
 | 
 | n | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | Nпол | 
 | ρgHQ | 
 | 
 | 
 | Nпол | 
 | 
 | 
 | ρgH Q | .; | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| Nпотр | 
 | 
 | 
 | 
 | 
 | ; | Nпотр | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | ηН | ηН | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ηН | 
 | 
 | ηН | 
 | 
 | 
 | 
 | |||
Nпотр Nпол ρgH Q . ηН ηН
Результаты расчетов приведены в табл. 3.5.2 и на рис. 3.5.4.
| 
 | 
 | 
 | 
 | 
 | Таблица 3.5.2 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Q, м3/с | 0 | 0,1 | 0,2 | 0,3 | 
 | 0,4 | 
 | 
| H, м | 30 | 27,5 | 25 | 20 | 
 | 10 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| ηн= η'н= =η''н | 0 | 0,6 | 0,9 | 0,75 | 
 | 0,45 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Nпотр, кВт | 0 | 44,917 | 54,444 | 78,400 | 
 | 87,111 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Q', м3/с | 0 | 0,0667 | 0,1334 | 0,2001 | 
 | 0,2668 | 
 | 
| H', м | 13,350 | 12,238 | 11,125 | 8,900 | 
 | 4,450 | 
 | 
| N'потр кВт | 0 | 13,332 | 16,160 | 23,270 | 
 | 25,856 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Q'', м3/с | 0 | 0,2 | 0,4 | 0,6 | 
 | 0,8 | 
 | 
| H'', м | 120 | 110 | 100 | 80 | 
 | 40 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| N''потр кВт | 0 | 359,333 | 435,556 | 627,200 | 
 | 696,889 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
Примечание: в действительности при Q = 0 потребляемая мощность не равна 0, а равна мощности холостого хода. Поэтому расчет потребляемой мощности в зависимости от подачи следует проводить для значений Q > 0.
Зависимости Nпотр= f(Q), Н' = f(Q'), N'потр= f(Q'), η'н= f(Q'), Н'' = f(Q''), N''потр= f(Q'), η''н= f(Q'') представлены на рис. 3.5.4.
70
