1
| X x + X x = 0
|
|
|
|
X x + X x = 0 0 x l |
1:1 |
|
|
X0 = X l = 0 |
1:2 |
X 0 = X l = 0 |
1:3 |
X0 = X l = 0 |
1:4 |
X 0 = X l = 0 |
1:5 |
% X0 = X2 X 0 = X 2 |
1:6 |
. ' , ) *+ , + + + +-+-+ 1.1 , % + ,* + % % -% % |% , , ,+ ,* + + + + +-+ ,
% 1 |2 .
|
% 1.1 , 1.2 . |
: 1 0, |
2 = 0, |
3 0. |
|
4 0, % + + + + + % % 55+ +-
4 + 1.1 ) 655 + |
|
|
2 + = 0 |
|
|
= p |
|
|
|
|
|
|
|
|
|
|
|
|
++ %+ + 4 + . |
|
*++ +-+ + + 1.1 7 |
) 4 %+ |
X x = C1 chp |
|
x + C2 shp |
|
|
|
|
|
|
|
|
|
x : |
1:7 |
|
|
|
% 1.7 + 1.2 , ) % % , |
+ + + + + + 4 C1 C2: |
|
|
C1 ch 0 + C2 sh 0 = 0 |
|
|
|
C1 chp |
|
l + C2 shp |
|
l = 0: |
|
|
|
|
|
9+ + + +-+ 6 |
+ *+ 4, + ) +- |
%+ + 4 + ,: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chp1 |
|
l shp0 |
|
|
= 0 |
shp |
|
l = 0: |
1:8 |
|
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.8 |
0 , , - |
. |
|
|
= 0, " 1.1 # $ |
|
|
X x = C1x + C2: |
1:9 |
1.9 " ' 1.2 , )"
C1 0 + C2 = 0 C1 l + C2 = 0:
* $' C1 = C2 = 0 -
, |
= 0 ' ' ' . |
|
|
0, " |
' |
1.1 |
|
|
2 + = 0 |
|
1 2 = |
ip |
|
|
|
|
|
|
|
|
|
|
|
. + # $ ' |
1.1 , |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X x = C1 cosp |
|
+ C2 sinp |
|
: |
1:10 |
|
|
x |
|
|
1.10 " |
' |
1.2 , ) |
|
" C1 C2: |
|
|
C1 cos 0 + C2 sin 0 = 0 |
1:11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C1 cosp + C2 sinp |
= 0: |
|
|
|
' ) . :
1 |
0 |
|
|
|
|
|
|
|
|
|
|
sinp = 0: |
|
cosp |
|
sinp |
|
|
= 0 |
1:12 |
|
|
1.12
qnl = n n = 1 2 ::: :
|
n = |
n |
!2 |
n = |
|
: |
1:13 |
|
1 1 |
|
l |
! " # $" % . " 1.12 = n. & ' '( " "' , ' '( , " ' ' "* * .
|
|
|
|
|
|
|
|
|
|
C1 1 + C2 |
0 = 0: |
|
|
|
|
|
|
C1 = 0 C2 | |
. |
|
1.10 = n |
! " #$ |
|
|
|
|
nx |
|
|
l |
|
|
l |
|
|
|
|
|
2 |
|
2 |
|
|
|
|
|
|
|
|
|
|
Xn x = sin |
l ! |
jjXn x jj |
|
= Z |
Xn x dx |
= |
|
n = 1 1: |
1:14 |
|
2 |
|
|
|
|
0 |
|
|
|
|
|
|
|
. ' ! " #$ ( ( ) * (, # # # ( ( ( , #-1.1 , 1.2 .
! |
1.1 , 1.3 . |
( 1 0, |
2 = 0, |
3 0. |
|
0, ) / # # ( 1.1
2 + = 0 = p
# . ! , ( 1.1 *1.7 . 1.7 ) ( 1.3 ,/ ) ! # / -C1 C2:
C1 sh 0 + C2 ch 0 = 0
C1 chp l + C2 shp l = 0:
( 2 # :
|
chp0 |
|
l shp1 |
|
|
= 0 chp |
|
l = 0: |
1:15 |
|
|
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, , ! / |
4 1.15 # |
|
0 .
= 0, ) ! , ( 1.1 1.9 . 1.9 ) ( 1.3 , -
# ( # , (. 6 , = 0 ( ( ( ! .
n = 0 1:
|
1 |
|
0 |
|
|
|
|
shp |
|
chp |
|
|
6=:0 |
|
|
|
|
= 0, 1.1 |
1.9 . 1.9 1.4 -CC11 =00+ C2 = 0
# # . $ % , = 0% .
0, 1.1 & % -1.10 . 1.10 1.4 ,' ( ) # ) ( -C1 C2:
|
|
|
|
C1 cos 0 + C2 sin 0 = 0 |
|
|
|
|
C1 sinp |
|
+ C2 cosp |
|
= 0: |
|
|
|
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, ( # ': |
|
1 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 0 cosp = 0: |
|
sinp |
|
|
cosp |
|
|
|
|
- 1.21 & # (
q |
nl = |
|
2n + 1 n = 0 1 2 ::: : |
2 |
. ' ) %
n = 22n + 12 4l2
/ ( ' 0 #1 .
=n 1.20. . ',
, . 2-
|
|
|
|
C1 1 + C2 0 = 0: |
|
|
|
|
|
|
|
. ' C1 = 0 C2 | |
% . |
( % |
|
1.10 |
= n |
0 #1 |
|
|
|
|
|
|
|
|
|
l |
l |
|
|
|
|
|
|
|
2 |
2 |
|
|
|
: |
|
|
|
|
|
|
Xn x=sin 2l |
2n + 1x! jjXn x jj |
=Z Xn x dx= |
2 n |
=0 1: |
|
1 23 |
|
|
|
|
|
0 |
|
|
|
|
|
|
q nl = n n = 1 2 ::: :
|
n = |
n |
!2 |
|
|
|
n = |
1 1 |
: |
1:28 |
|
l |
.1.26 = n. #$% %& $ % , %- %& , $ % % $) ) . *$ #$ $ #$
C1 0 + C2 1 = 0:
C2 = 0 C1 | #$%& . # % $%&1.10 #$ = n # %
|
nx |
|
|
l |
|
l |
|
|
|
|
|
|
2 |
|
2 |
|
|
|
|
|
|
|
|
|
|
Xn x=cos |
l ! |
jjXn x jj |
|
=Z |
Xn x dx= |
|
n=1 1: |
1:29 |
|
2 |
|
|
|
|
0 |
|
|
|
|
|
|
|
* / 1.1 , 1.6 . *$ $ % : 1 |
0, |
2 = 0, 3 |
0. |
|
|
|
|
|
|
|
|
|
|
& |
0, ) $/ $ 1.1 2 # & |
1.7 . 1.7 )$ % 1.6 # % |
$ %)$ $ %& C1 C2: |
|
C11 ch 2 C2 sh 2 = 0 |
1:30 |
|
C1 sh 2 + C21 ch 2 = 0: |
|
|
#$% %& 4 $ |
|
|
1 sh 2 2 sh22 = 2 1 ch 2 6= :0 |
|
5% %& , 1.30 %& % $/ C1 = C2 = 0 |
. #$ |
0 . |
|
& |
= 0, ) $/ $ 1.1 |
1.9 . 1.9 1.6 # % |
|
C1 2 = 0
1 = 1:
C1 = 0 C2 #$ #$%& , % %& , 0 = 0 % , -
|
0, |
|
|
|
|
|
|
|
|
|
|
8 C11 |
cosp |
|
C2 sinp |
|
|
2 |
|
|
|
2 |
|
= 0 |
|
|
|
|
|
|
|
|
|
|
|
|
1:32 |
|
|
|
|
|
|
|
|
|
|
|
: C1 sinp 2 + C21 cosp 2 = 0: |
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
1 cosp |
|
2 2 + sin2 p |
|
2 = 2 1 cosp |
|
2 |
= 0: |
|
|
|
! " # ! |
|
|
|
|
|
|
n = n 2 n = |
|
: |
1:33 |
|
|
1 1 |
1.33 1.32 ! % : C1 C2# # ! jC1j + jC2j 6=:0 1.10 ! 1.33 ! " ' (
Xn x = An cos nx + Bn sin nx n = |
1 1 |
|
1:34 |
8An Bn jAnj + jBnj 6=:0 |
|
* " + ' ( |
|
|
|
2 |
|
|
|
jjX0 x jj2 = A202 jjXn x jj2 = 0 Xn2 x dx = A2n + Bn2 n = 1 1:
|
|
|
2 |
2 |
|
2 |
2 |
2 |
|
|
|
|
|
|
0 ' |
n ' |
= 1 1: |
2:11 |
|
|
= 2 A0 |
|
= An + Bn n |
|
= n 2.9 .26 |
|
|
|
|
1 |
0 |
n2 1 |
|
Rn + rRn + @ |
r2 A Rn = 0 r a : |
2:12 |
2.2
r = 0:
Rn r ! " |$
2.12 |
Rn x = 0 |
|
|
|
|
2:13 |
|
|
|
|
|
|
|
jRn x j +1 |
|
|
|
2:14 |
' ! ! ( ( x = p |
|
r |
|
2.12 . ) R r = R x=p y x, + : |
|
|
|
dy x |
dy dx dy p |
|
|
d2y x |
d2y |
|
|
|
|
|
|
|
|
dr |
= dx dr |
= dx |
|
dr2 |
= dx2 |
: |
- . / 0 1 ( 2.12
2 n- -
0d2y |
1 dy |
0 |
n2 11 |
= 0: |
@dx2 |
+ x dx |
+ @1 |
x2 AA |
4 56 7 1 ! +
y x = CJn x + DNn x
Jn x | 8-9 2 n- -, Nn x | 8-9 : ( n- -. 0 2.14 + 8-9 (
Nn x r ! 0 D = 0:
; ! 6 + - + ( (, 0
r = 0 7 2.12 p r : 2:15=
2.15 2.13 -
5 0/ ! (:
Jn p a = 0:
= > 5 0 ! :