U 1
U 1 = A cos 3x + B sin 3x:
|
2 d2U |
2 |
U = 2p sin 3x |
|
|
|
a |
dx2 |
|
p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a29A cos 3x 9B sin 3x |
|
|
p2 Acos 3x + B sin 3x = |
2p sin 3x: |
|
|
|
|
|
|
|
2p |
|
|
|
|
|
|
|
|
|
|
B = |
|
|
|
|
A = 0: |
|
|
|
|
p2 + 9a2 |
|
|
|
! " : |
|
|
|
|
|
|
|
2p |
|
|
|
|
|
|
|
|
|
|
U 1 = |
|
|
|
|
sin 3x: |
|
|
|
|
|
|
|
|
|
|
|
p2 + 9a2 |
|
|
$ % |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
U 2 = |
|
|
|
p |
|
|
|
sin 5x: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p2 + 25a2 |
|
|
|
|
|
|
|
|
|
|
|
|
'( 4.3.3 ' 4.3.1 |
|
|
U x p = C1 sh apx! + C2 ch ap x |
2 !! + |
|
+ |
2p |
|
|
|
|
|
|
|
p |
|
|
|
sin 3x + |
|
|
sin 5x: |
4:3:5 |
p2 + 9a2 |
p2 + 25a2 |
4.3.5 , - 4.3.2 , C1 = C2 = 0: |
/ 0: |
|
2p |
|
|
|
|
|
|
|
|
p |
|
|
U x p = |
|
|
sin 3x + |
sin 5x: |
|
p2 + 9a2 |
p2 + 25a2 |
|
( ( 1 2 , ,- -1 ( 4- . . 7, ( . 7.2, . 8 :
L |
1 |
" |
p |
# = cos at |
|
|
|
p2 + a2 |
% 0 u x t :
4.3.2.
.
u x t = 2 cos at sin 3x + cos at sin 5x: |
:3:6 |
- -# # $% &$' .
. ''# # -
|
|
@2u |
2 @2u |
|
|
|
|
@t2 = a |
@x2 |
+ f x t |
:3:7 |
' (# (# (# ' # |
|
|
|
@u |
|
@u |
|
u |
0 = |
@x x |
2= u t=0= @t t=0= 0 |
4:3:8 |
|
|
f x t = 3e |
t sin x: |
4:3:9 |
|
|
4.1.17 | 4.1.21 ! 4.3.7 | 4.3.9 ! 4.3.6 4.1.1 | 4.1.3 ,
$! ! 4.3.1.
@2u
%! $& , u x t, @x2 f x t ' ! . %-
& U x p = L)u* F x p = L)f* $! $! +! ,$ - ! ' 4.3.7 ! . 4.3.8 , $! / - 012
2 d2U |
|
2 |
U = |
|
3 |
sin x |
4:3:10 |
a dx2 |
p |
|
|
|
p + 1 |
! . |
|
|
|
|
|
|
|
|
|
U x=0= 0 |
|
|
dU |
|
|
|
|
|
dx x= 2= 0: |
4:3:11 |
0+4 ! 12 4.3.10 |
|
|
U x p = C1 sh apx! + C2 ch ap x |
2 !! + |
+ |
|
3 |
|
1 |
|
sin x: |
4:3:12 |
p + 1 |
|
|
p2 + a2 |
|
|
|
|
|
|
% 4.3.12 ! . |
|
4.3.11 , C1 = C2 = 0. |
4.3.1 4.3.2.
31
U x p = p + 1 p2 + a2 sin x:
, -! . . 7, . 7.1, . 7 $ -
|
|
% . . 7, . 7.2, . 7 . 3 : |
|
|
1 |
1 |
|
t |
|
|
1 |
1 |
|
|
|
1 |
|
|
L |
|
" |
|
# = e |
|
|
L |
|
" |
|
# = a sinat : |
|
|
p + 1 |
|
|
p2 + a2 |
|
' ( ) * ) 4.3.7 | 4.3.9 |
|
|
|
|
|
|
|
|
u x t = a3 Zt sina e |
t d |
|
|
|
sin x = |
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
t |
! |
sin x |
|
|
|
|
= 3 a sinat |
cosat + e |
|
|
: |
4:3:13 |
|
|
|
|
1 + a2 |
. * ) 4.1.17 | 4.1.21 ) % *- % 4.3.6 4.3.13 .
.
1 t! sin x u x t = 3 a sinat cosat + e 1 + a2 +
+2 cos 3at sin 3x + cos 5at sin 5x:
1 ) * 2 2- ) ) $ ( ) )- , ) ) ( 4.1.1 4.1.2.
5.
3 ) 4.6
@u@t = a24u + f
4 % 4 ) 55 6 4- 4 % u t x7 , $) a2 | 855 4 ) 55 , f | 2
c = k2 0 k = i i | -.
5.2#, 5.3# &-' @D c = (2 0 & , ) .c = k2 0 - ) , & *4, 5, 10|12-.
& & & & e i!t#
|
@u |
|
|
|
|
|
|
|
iku = o 1=pr# |
|
r ! 1. |
5:4# |
|
@r |
|
/& & |
|
|
|
|
|
|
|
@u |
iku = o 1=r# |
|
r ! 1: |
5:5# |
|
@r |
0 & / / .
5.1.
5.1. 1 ) 2 )& )'
2 |
1 |
|
@ |
|
@u |
1 |
@2u |
2 |
|
|
4u + k |
u = r |
|
|
|
r @r |
! + |
|
@'2 |
+ k |
u = 0 |
5:1:1# |
|
@r |
r2 |
D = f r '# : |
r a 0 ' =6g |
& & |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u |
|
|
|
= |
@u |
|
|
= 0 |
|
|
5:1:2# |
|
|
|
'=0 |
|
@' '= =6 |
|
|
|
|
|
|
u |
r=a |
= g '# = 2 sin 3' |
|
|
5:1:3# |
|
|
|
|
|
|
|
|
|
|
|
|
k2 6= i i | |
. |
|
|
|
|
|
|
|
. 6 & |
5.1.1#, - |
& & |
|
5.1.2# |
|
|
|
|
|
|
|
u r '# = R r#7 '#: |
|
|
5:1:4# |
y x = AnJ3 2n+1 x + BnN3 2n+1 x
Jk x | k- , Nk x | #$ k- . & ' $ $, '() 5.1.10
Rn r = AnJ3 2n+1 kr + BnN3 2n+1 kr :
- #$ Nk x ! 1 x ! 0. . - /$ ' 0 ' 0 r ! 0 ' Bn = 0: 1 , ' 0 () 5.1.10 2
|
Rn r = AnJ3 2n+1 kr |
n = |
0 1 |
: |
5:1:11 |
3 0 5.1.4 $0: |
|
|
|
|
|
|
|
un r ' = Rn r6n ' n = |
|
: |
|
|
0 1 |
|
7 ' 5.1.1 | 5.1.3 |
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
u r ' = |
un r ' = |
AnJ3 2n+1 kr sin 3 2n + 1' |
5:1:12 |
n=0 |
|
n=0 |
|
|
|
|
|
|
, ' : |
0 ' |
0 |
r, '. & : |
: 0 An 0. #$- |
/, 5.1.12 ' 5.1.3 : |
|
|
|
1 |
|
|
|
|
|
|
|
|
g ' = |
AnJ3 2n+1 ka sin 3 2n + 1' : |
5:1:13 |
|
|
n=0 |
|
|
|
|
|
|
|
. ' 0 $ $g ' - $ ;0 =6= - 0/ $ 5.1.9 . /
=6
AnJ3 2n+1 ka = Z g ' sin 3 2n + 1' d': 5:1:14 12 0
7 /$ ' u r ',5.1.12 , : 0 An 0' 2 5.1.14 .
& $ ' : 0 An $, - 2 5.1.14. . 5.1.12 ' 5.1.3 '
2 sin 3' = AnJ3 2n+1 ka sin 3 2n + 1' :
0
sin 3' = 0 ' | .! " # !$ - !$ $, #
A0J3 ka = 2 An = 0 " n 6= 0: 5:1:15
) # 5.1.15 5.1.12 " * + # 5.1.1 | 5.1.3 .
.
u r ' = 2I3 kr sin 3': 5:1:16
I3 ka
. -* + # # . / 0 /
0 ! 5.1.2 , 5.1.3 + # # 34 . 56 5.1.5 " # 7 # - #$ 0 0
R r + 1rR r 12 + r2 ! R = 0: 5:1:18 90 4 * " = n = 322n + 12 + " * #
Rn r = AnI3 2n+1 1r + BnK3 2n+1 1r
0# Ik x | : /# , Kk x | ; # /# . <-; # /# Kk x ! 1 " x ! 0: =0 ! * 56 5.1.18 3 #
Rn r = AnI3 2n+1 1r n = 0 1:
-* + # 5.1.17 , 5.1.2 , 5.1.3 # 34
#:
u r ' = 2I31r sin 3': I31a