|
|
u 0 = g x |
4:14 |
@u |
|
= p x x 2 D @D: |
4:15 |
@t |
t=0 |
4.12 , !
4.13
u x t = v x T t 6 0: |
4:16 |
% 4.16 4.12 , & ' :
T t v x = a2T t 4v x , |
T t |
= |
4v x |
: |
2 |
v x |
|
a T t |
|
|
% ' ) x 2 D t 0 -
, ' ' . +) & ,
- : |
|
|
|
T t |
|
|
|
4v x = : |
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
a2T t |
|
|
|
|
|
|
|
|
|
|
|
v x |
|
|
|
|
|
|
|
+ ! ' + |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T t + a2T t = 0 |
t 0 |
|
|
|
|
4:17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4v x + v x = 0 |
x 2 D: |
|
|
|
|
4:18 |
% ' - 4.16 1 4.13 , ' |
T t |
|
@v |
+ v |
! |
|
|
|
|
= 0 , |
|
@v + v |
! |
|
|
= 0: |
4:19 |
|
@n |
|
|
|
@D |
|
|
@n |
|
@D |
|
|
4.18 , 4.19 | !! "#$-
## &' "
v x 6 0 #( # (! #)! D * !#-
4.19 .
+ (#!#$ , # #) n, n = 1 1 ## &' #) ,-. vn x, -# # #) & # # # # &, (#! & ,-. # #) "
#) " ,-. . x 3.8 .
|
|
|
|
|
|
|
|
|
|
|
|
4.17 = n, n = |
1 1 |
: |
|
|
|
|
|
|
|
|
|
|
Tn t = An cosq |
|
at + Bn sinq |
|
|
|
|
|
|
n |
n |
at n = |
1 1 |
|
4:20 |
# = 0: $ # % , & ' #( ) #) ) * + %0 = 0 , 4.17
T0 t = A0 + B0t:
+ % 4.12 | 4.15 # n = 0 . &-
0 #( ' )
1
u1x t = X Tn t vn1x =
n=0
1 |
An cosq nat + Bn sinq nat vn1x |
|
= nX=1 |
4:21 |
# ' ), % ' 2 ..0 ( 2 * t x:1 3 + * & ..0 * An Bn + % #( * #
4.14 4.15 . 4 4.21 4.14 # %
1 |
|
g1x = nX=1 Anvn1x : |
4:22 |
5# #( , An | & ..0 * 6 ( +# 2 ) + . &-
0 1 # 1 * . &0 1 = 1
g x D vn x n 1:
#) # ) An #(+ ) (7 - * . &0
ZZZ |
vn1x vk1x dx1 = nk: |
|
D |
|
|
|
|
2 4.22 vk1x, ' x1 D # % |
1 |
|
|
|
|
ZZZ g1x vk1x dx1 = nX=1 An ZZZ vn1x vk1x dx1 = Ak k = |
|
: |
4:23 |
1 1 |
D |
D |
|
4 # & 4.21 4.15 # %
1
p1x = X Bnq navn1x :
n=1
Bk:
p x vk x dx =
D
= Bnq |
|
a ZZZ vn x vk x dx = Bkq |
|
|
|
n |
k |
a k = |
1 1 |
: |
:24 |
n |
|
D |
|
|
|
|
' % ! -
.
|
|
|
( c )* |
f x t 6 0 - |
" # " |
! " |
-% . , " / " n -" / " vn x 0 |1% ! % -% "3 $4 # #
# " |
|
|
|
|
5 ! |
|
|
|
. |
|
|
|
% |
/ " vn x = |
1 1 |
|
|
|
|
1 |
|
|
|
|
u x t = |
un t vn x |
:25 |
|
|
1 |
|
|
|
# unt |
. " f x t |
x x . - |
. " % / " |
|
|
|
|
|
1 |
|
|
|
|
f x t = |
fn t vn x |
:26 |
|
n=1 |
|
|
1 |
|
|
|
|
|
g x = |
gn vn x |
:27 |
|
n=1 |
|
|
1 |
|
|
|
|
|
p x = |
pn vn x |
:28 |
n=1
fn t gn pn
fn t = |
f x t vn x dx |
4:29 |
|
D |
|
gn = |
g x vn x dx |
4:30 |
D |
|
|
|
|
pn = |
p x vn x dx n = |
|
: |
4:31 |
1 1 |
D |
|
|
|
|
$% , 4.25 % % t x: $ 4.25 , 4.26 4.9
|
8d2un t |
2 |
n |
n |
t |
n |
9 |
n |
x = 0: |
n=1 |
|
dt2 |
+ a |
|
u |
f |
t = v |
|
: |
|
|
|
|
|
|
|
|
|
+ ,- . vn x D, :
d2un t |
2 |
|
|
|
|
|
|
dt2 |
+ a nun t = fn t n = 1 1: |
4:32 |
$ 4.27 , 4.28 4.14 , 4.15
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4:33 |
|
un0 |
|
gn |
g |
vn x = 0 |
|
un0 = gn |
|
n = |
1 |
|
2 |
|
|
n=1 f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
8dun0 |
|
|
|
n9 n |
|
|
|
|
|
|
dun0 |
|
|
|
|
|
|
|
|
|
X |
|
|
|
x = 0 |
|
|
|
n |
= 1 : |
4:34 |
|
|
|
|
p |
= v |
dt |
|
= p n |
n=1 |
: |
dt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
3 4 5 6 4 un t 4.32 | 4.34 n 6= 0% |
, , : |
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
un t = Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sinaq n t fn d |
|
+ gn cosaq nt+ |
|
|
ap |
|
|
|
|
n |
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
1 |
|
|
sinaq |
|
t |
|
|
|
|
|
|
|
|
|
|
4:35 |
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
pn |
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ap |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$ 4.35 4.25 , 4 5 4.9 , 4.13 | 4.15 .
|
|
|
T t + a2T t = 0 |
4:1:6 |
X x + X x = 0: |
4:1:7 |
4.1.5 |
! |
" 4.1.2 - |
|
|
|
T t X0 = 0 |
X0 = 0 |
4:1:8
T t X =2 = 0 X =2 = 0:
& ' ( ) |+ " 4.1.7 , 4.1.8 . 1 . . -. ( " / . 0 12 l = =2 / 3 1.22 , 1.23 :
n = 2n + 12
Xn x = sin 2n + 1x n = 0 1: 6 7 4.1.6 = n:
Tn t + na2Tn t = 0:
8! ./ ' 9 ( 7
Tn t = An cosq nat + Bn sinq nat :
: 1, ' 9 ; ' 3 4.1.5 un x t = Tn t Xn x =
= <An cos 2n + 1at + Bn sin 2n + 1at= sin 2n + 1x n = 0 1:
& ' 3 ( 4.1.1 | 4.1.4 . 1 7 0 12-7 ! "
u x t = un x t =
0
1
= <An cos 2n + 1at + Bn sin 2n + 1at= sin 2n + 1x 4:1:9
n=0
! ", ! 9 00 2 7 ( 3 t 3 x.
|
|
4.1.9 4.1.3 4.1.4 |
|
|
g x = |
An sin 2n + 1x |
4:1:10 |
|
|
|
0 |
|
|
|
|
|
1 |
|
|
|
|
p x = |
Bn2n + 1a sin 2n + 1x: |
4:1:11 |
|
|
|
n=0 |
|
|
|
! "##$ An Bn % |
& '- |
) * # !$+ ,0 =2-: |
|
|
|
2 |
|
sin 2k + 1x dx = nk: |
|
|
|
Z sin 2n + 1x |
|
|
|
0 |
|
4 |
|
/ |
|
* & 4.1.10 sin 2k + 1 , & '&- |
& |
x ,0 =2- |
|
|
2 |
2 |
|
|
|
1 |
|
|
Z g x |
sin 2k + 1x dx = X An Z sin 2n + 1x sin 2k + 1x dx |
0 |
n=0 0 |
|
|
1 ' % 4.1.11 |
|
|
|
2 |
|
|
|
Z p x sin 2k + 1x dx = Bk2k + 1a |
: |
|
0 |
4 |
|
2 )
2
An = 4 Z g x sin 2n + 1x dx0
2
Bn = 4 Z p x sin 2n + 1x dx: 2n + 1a 0
! An Bn 4.1.9 ! |
& 3 |
& . |
|
4 3 # !$ g x p x 4.1.3 |
4.1.4 ) |
! !& + , % )5 + + ! "##$ 6 & 4.1.12 4.1.13 , & * ' ! '& & ). ! 4.1.94.1.3 , 4.1.10
1 |
|
2 sin 3x + sin 5x = X An sin 2n + 1x: |
4:1:14 |
n=0 |
|
sin 3x = X1 x sin 5x = X2 x |. ! - ! #! #! 4.1.14
|
A1 = 2 |
A2 = 1 |
An = 0 n 6= 1 2: |
4:1:15 |
( |
|
4.1.9 |
* 4.1.4 , |
|
4.1.11 |
|
|
|
|
|
0 = |
Bn sin 2n + 1a sin 2n + 1x: |
|
n=0
- . :
Bn = 0 n = 1 1: 4:1:16
( 4.1.15 4.1.16 4.1.9 1 ! 2 .
. u x t = 2 cos 3at sin 3x + cos 5at sin 5x:
|
. 3 # 4 4.37 |
2 |
|
|
|
|
|
|
|
|
|
|
G x y6 t = |
4 1 |
|
1 |
|
sina2n+1t |
sin 2n+1x sin 2n+1y |
|
|
|
|
|
|
|
a n=0 2n + 1 |
|
|
|
|
|
1 2 |
|
# # 7*. 4 |
|
4.36 |
|
|
|
|
|
|
|
2
u x t = Z g y @G x y6 t 0 dy 0 @t
2
+ + Z p y G x y6 t 0 dy:
0
4.1.1. 8 1 * *-. 2 # #
* # .
1. u |
x=0 |
= ux |
x= 2 |
= u |
t=0 |
= 0 |
ut |
t=0 |
= sin x 2 sin 3x: |
|
|
|
|
|
|