
УрМатФиз / УрМатФиз с теорией
.pdf
|
|
|
|
x + v x = 0 |
|
x 2 D: |
|
|
|
|
3:11 |
|||||
3.9 3.8 , |
|
|||||||||||||||
T t |
|
|
@v |
+ v |
! |
|
|
= 0 , |
|
|
@v + v |
! |
|
|
= 0: |
3:12 |
|
|
@n |
|
|
@D |
|
|
@n |
|
@D |
|
|
3.11 , 3.12 !" # !$ % |' # ( )-
# + "( !$ ,-( + "(
. /$ v x 6 0 ' + D " - # 3.12 .
) , ! " + " ! # n n = 1 1
,- + " . / vn x, " + ! ,
, , . /$ D $ +- "( !$ + "( . /$ . x 3.8 . 0 123 3.10 = n n = 1 1: 1+- 4 # 5 ( $
Tn t = Ane na2t n = 1 1:
6 , " 4 # 3.9 $": |
|
un x t = vn x Tn t = Ane na2tvn x : |
3:13 |
0 4 $ ! 3.7 , 3.8 , 3.2 - . / 9 #
|
1 |
|
1 |
Ane na2tvn x |
|
u x t = |
X |
Tn t vn x = |
X |
3:14 |
|
|
n=1 |
|
n=1 |
|
|
#, ) ../ 9 ! t !x. ; ! " 5../ " An $ ! 9 #
3.2 .
3.14 3.2
|
1 |
|
|
g x = |
X |
An vn x : |
3:15 |
n=1
= 9 , An | 5../ " > 9 ! ) # !$ . - / g x $ D + "( . /$ fvn x g n = 1 1:
2 # # An 9! # 9 9, + "(
. /$:
vn x vk x dx = nk:
181
3.15 vk x, x D
|
1 |
|
|
|
g x vk x dx = nX=1 An ZZZ vn x vk x dx = Ak k = |
|
: 3:16 |
D |
1 1 |
||
D |
, ! " 3.7 , 3.8 , 3.2 & & & ' ( & u x t, " & ' ( ) * & 3.14 , An * &, &
' 3.16 .
-) -
.
. " & / 3.6 -
* & 3.8 ) * 3.2 .
1 , " * 2 * " & n 2-
* ' ( vn x " 3 |5 & 3.11 , 3.12 , - & & " ) & " & - * & ,6 & 3.7 *
& 3.8 . |
|
7 ) ! " 3.6 , 3.8, 3.2 |
"- |
& & 2 * ' ( & vn x n = 1 1 |
|
1 |
|
u x t = X un t vn x |
3:17 |
n=1 |
|
un t . " * ' ( f x t g x "-
& * 2 * ' ( &
1 |
|
f x t = X fn t vn x |
3:18 |
n=1 |
|
1 |
|
g x = X gn vn x |
3:19 |
n=1 |
|
9'' ( * " ! fn t gn * &, & '
fn t = ZZZ |
f x t vn x dx |
3:20 |
|||
|
D |
|
|
|
|
gn = ZZZ |
g x vn x dx n = |
|
: |
3:21 |
|
1 1 |
|||||
D |
|
|
|
|
|
1 , & |
3.17 |
'' ( ) |
|||
" t " x. 1 |
3.17 , 3.18 3.6 |
182
|
|
dun |
|
|
|
|
|
vn x a2 4vn x un t fn t vn x = 0: |
|
||
1 |
dt |
|
|||
: |
|
||||
|
n1 dudtn + a2 n un t |
fn t vn x = 0 |
3:22 |
||
|
|
X |
|
|
|
|
=1 |
|
|
|
|
, 3.11 4vn x = |
nvn x : |
|
# D $% & '( ) vn x 3.22
|
|
dun t + a2 n un t = fn t n = |
|
|
|
|
||
|
|
|
|
|
3:23 |
|||
|
|
1 n: |
||||||
|
|
|
dt |
|
|
|
|
|
* 3.17 3.19 3.2 |
|
|||||||
|
1 |
|
|
|
|
|
|
|
|
X |
fun0 |
gng vn x = 0 |
un0 = gn n = |
|
|
3:24 |
|
|
|
1 n: |
||||||
|
n=1 |
|
|
|
|
|
|
|
. / |
0 / 1 un t 3.23 , 3.24 , - |
|||||||
, ( : |
|
|
|
|
|
|||
|
|
|
t |
|
|
|
|
|
|
|
un t = Z e a2 n t |
fn d + gne a2 nt: |
3:25 |
||||
|
|
|
0 |
|
|
|
|
|
* 3.25 3.17 & /
3.6 , 3.8 , 3.2 1 6 1.
* ' 3.25 3.17 ) 1 ' 7&&- ( 8 3.20 3.21 / 1
3.6 , 3.8 , 3.2 & '( 9
t |
|
|
|
|
|
|
u x t = Z |
ZZZ |
f y G x y: t dy d + ZZZ g y G x y: t 0 dy |
3:26 |
|||
0 |
D |
|
|
|
D |
|
6 |
|
|
1 |
e a2 |
n t vn y vn x |
|
|
|
G x y: t = |
X |
3:27 |
||
|
|
|
n=1 |
|
|
|
| , .
. ./ -' ) 3.6 , 3.2 -
3.3 | 3.5
|
|
@u |
+ u |
! |
= x t x 2 @D |
j j + j j 6= 0 3:28 |
|
@n |
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
@D |
|
|
' / , -
6 . < 1 7 6 ' /
183

u x t = U x t + w x t
U x t | , wx t | -x t ,!
%. 5 & ' w x t ' ' '.
% ( ( )! , !* ' ++ ! . , +-
(-' |
|
|
||
f~ x t 0 ( |
g x 0 - |
|||
|
& |
|||
u x t = |
@ |
t v x t x d = Zt @v x t |
x d = |
|
|
||||
|
@t |
@t |
|
= v x t x 0 + Zt v x t @ @ d
v x t | + ( ' -
|
|
|
||
t: |
|
|||
|
@n@u + u! |
@D= 1 |
j j + j j 6= :0 |
|
|
|
|
|
|
|
3.1. |
2 & ' + u x t (-' -
@u |
2 @2u |
|
|
|
@t |
= a @x2 |
D |
= fx : 0 x =4g 0 t |
:1:1 |
@D |
|
|||
|
@u |
|
u x= =4= 0 0 t |
|
|
@x x=0= 0 |
:1:2 |
||
( |
|
|
|
184

|
|
u |
= g x = 2 cos 2x |
3 cos 6x |
0 x =4: |
:1:3 |
||||||||
|
|
|
t=0 |
|
|
|
|
|
|
|
|
|
|
|
. |
- |
|||||||||||||
|
|
! " |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u x t = X x T t 60: |
|
:1:4 |
|||||||||
# |
|
$ % |
|
|
|
|||||||||
|
|
Xx |
T 0 t = a2T t X x |
, |
T t |
= |
|
X x |
|
= : |
||||
|
|
a2T t |
X x |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|||||
& |
% &'( |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
T t + a2T t = 0 |
|
|
|
|
|
|
:1:5 |
||||
|
|
|
X x + X x = 0: |
|
|
|
|
|
|
:1:6 |
||||
# |
" |
%- |
||||||||||||
|
|
|
T t X |
= 0 X |
|
= 0 |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:1:7 |
|
|
|
T t X =4 = 0 X =4 = 0: |
|
|
|||||||||
, $ -|/ |
|
|
|
|
|
|
|
% |
||||||
% . |
1 |
0 . 0 $ |
! 0- |
|||||||||||
1 23 % l = =4 |
|
! |
|
|
|
|
||||||||
|
|
|
n = 4 2n + 12 |
|
|
|
|
|
|
|
|
|||
|
|
|
Xn x = cos |
n + 1x |
n = |
|
: |
|
|
|||||
|
|
|
0 1 |
|
|
|||||||||
7 % 8 &'( |
|
% = n: |
|
|
Tn t + na2Tn t = 0:
9" 0!
Tn t = Ane na2t n = 0 1:
: 2, ; <
unx t = Tn t Xn x = Ane na2t cos n + 1x n = 0 1:
185
|
|
3.1.1 | 3.1.3 |
- |
|||
|
! |
|
|
|
||
|
|
|
|
1 |
na2t cos 2 2n + 1x |
|
|
u x t = |
un x t = |
Ane |
3:1:8 |
||
|
|
|
0 |
n=0 |
|
|
& & !, ( |
|
& & - |
||||
t |
|
& & x. |
|
|
||
) |
3.1.8 3.1.3 & |
|
||||
|
|
|
1 |
|
|
|
|
|
|
g x = |
An cos 2 2n + 1x : |
3:1:9 |
n=0
+ ! ( ! , - An & ! - . / 00 =43:
=4 |
|
|
|
|
|
Z cos 2 2n + 1x cos 2 2k + 1x dx = nk: |
|
|
|||
0 |
|
|
8 |
|
|
5 ( |
3.1.9 cos 2 2k + 1x, & |
- |
|
||
& x 00 =43 & |
|
|
|||
=4 |
|
1 |
=4 |
|
|
Z g x cos 2 2k+1x dx= X An Z cos 2 2n+1x cos 2 2k+1x dx = Ak |
: |
||||
0 |
n=0 |
0 |
8 |
|
|
6 . |
|
|
|
|
|
|
= 8 |
=4 |
|
|
|
An |
Z g x cos 2 2n + 1x dx: |
3:1:10 |
|
||
|
|
0 |
|
|
|
) , , / 3.1.8 , & - |
|
||||
|
! . |
|
|
||
7 ! g x 3.1.3 , & !.8 |
|
||||
, / - 3.1.10 , & ! .. |
|
||||
) & 3.1.8 3.1.3 & 3.1.9 |
|
||||
|
|
|
|
|
|
|
|
|
1 |
|
|
2 cos 2x |
3 cos 6x = X An cos 2 2n + 1x : |
3:1:11 |
|
||
|
|
|
n=0 |
|
|
) ! ! ! X0 x = cos 2x, | X1 x = cos 6x. : ! , /
186
|
|
|
- |
||
3.1.11 , |
|
|
|
|
|
A0 = 2 |
A1 = 3 An = 0 |
n 6= 0 1: |
3:1:12 |
||
" # 3.1.12 |
3.1.8 , |
% - |
|||
& . |
|
|
|
|
|
. u x t = 2e |
4a2t cos 2x 3e |
36a2t cos 6x: |
|
|
. ( ) 3.27 &
|
|
|
|
|
G x y+ t = 8 |
e a24 2n+1 2 t cos 2 2n + 1x cos 2 2n + 1y |
|||
|
n=0 |
|
|
|
|
|
|||
3.26 |
|
|
|
|
|
|
=4 |
|
|
|
|
u x t = Z |
g y G x y$ t 0 dy: |
|
|
|
0 |
|
|
|
3.1.1. |
& - |
||
|
|
|
@2u |
|
|
|
@u |
= a2 |
|
|
|
@t |
@x2 |
|
|
|
|
( ) ( ( ( -.
1. |
u x=0= u x= = 0 |
u t=0= 3 sin 2x sin 3x: |
|
2. |
u x=0= ux x= =2= 0 |
u t=0= 2 sin x |
3 sin 5x: |
3. |
ux x=0= u x= =2= 0 |
u t=0= 2 cos x + 3 cos 3x: |
|
4. |
ux x=0= ux x= = 0 |
u t=0= 3 + cos x |
5 cos 2x: |
5. |
u x=0= u x=2 = 0 |
u t=0= 2 sinx=2 |
sin x: |
6. |
u x=0= ux x= = 0 |
u t=0= 3 sinx=2 |
sin 3x=2: |
187
7. |
ux x=0= u x= = 0 |
u t=0= cos x=2 |
2 cos 5x=2 : |
||
8. |
ux x=0= ux x= =2= 0 u t=0= 1 + cos 2x |
2 cos 4x: |
|||
9. |
u x=0= u x=2 = 0 |
u t=0= sin x=2 |
3 sin x: |
||
10. |
u x=0= ux x=2 = 0 |
u t=0= 2 sin x=4 |
|
sin 3x=4 : |
|
11. |
ux x=0= u x=2 = 0 |
u t=0= 3 cos x=4 |
|
cos 3x=4 : |
|
12. |
ux x=0= ux x=2 = 0 |
u t=0= 2 cos x=2 |
cos x: |
||
13. |
u x=0= u x= = 0 u t=0= sin x |
2 sin 3x: |
|||
14. |
u x=0= ux x= =2= 0 |
u t=0= 3 sin x |
sin 3x: |
||
15. |
ux x=0= u x= =2= 0 |
u t=0= cos x 3 cos 5x: |
|||
16. |
ux x=0= ux x= = 0 |
u t=0= 2 |
cos x + 3 cos 2x: |
17.u x=0= u x=2 = 0 u t=0= sin x=2 + 3 sin 2x:
18.u x=0= ux x= = 0 u t=0= sin x=2 + 2 sin 5x=2 :
19.ux x=0= u x= = 0 u t=0= 2 cos x=2 + cos 3x=2 :
20. |
ux x=0= ux x= =2= 0 u t=0= 2 cos 2x + cos 6x: |
||
21. |
u x=0= u x=2 = 0 |
u t=0= 3 sin x=2 + sin x: |
|
22. |
u x=0= ux x=2 = 0 |
u t=0= sin x=4 |
sin 5x=4 : |
23. |
ux x=0= u x=2 = 0 |
u t=0= cos x=4 |
2 cos 5x=4 : |
24. |
ux x=0= ux x=2 = 0 |
u t=0= cos x |
3 cos 2x: |
|
|
188 |
|
25. u x=0= u x= = 0 u t=0= sin 2x sin 5x:
26.u x=0= ux x= =2= 0 u t=0= sin x + 2 sin 3x:
27.ux x=0= u x= =2= 0 u t=0= cos x + 2 cos 3x:
28. |
ux x=0= ux x= = 0 |
u t=0= 2 cos x |
cos 3x: |
29. |
u x=0= u x=2 = 0 |
u t=0= sin x 3 sin 5x: |
|
30. |
u x=0= ux x= = 0 |
u t=0= sin 3x=2 |
sin 5x=2: |
3.1.2. - ! - " ! # # $
@u |
= a |
2 |
@2u |
+ f x t D = fx : 0 x =4g |
0 t |
3:1:13 |
||
@t |
|
@x2 |
||||||
|
|
|
|
|
|
|
||
$ () " () $!) |
|
|
|
|||||
|
|
|
|
@u |
|
|
|
|
|
|
|
|
@x x=0= 0 |
u x= =4= 0 |
0 t |
|
3:1:14 |
() $) |
|
|
|
|
||||
|
u t=0= g x = 2 cos 2x 3 cos 6x 0 x =4 |
3:1:15 |
||||||
" * + ! |
|
|
|
|
|
|
||
|
|
|
|
f x t = cos 2t cos 10x: |
|
3:1:16 |
. , ) $# ) " -) |/- !, ! #$! ! # ) (1 -) 3.1.13 # f x t 0 $ () " ()$!) 3.1.14 $). # ) 3.1.1 3.1.6 , 3.1.7 :
X x + X x = 0
X 0 = 0 X =4 = 0:
189