
УрМатФиз / УрМатФиз с теорией
.pdf8. |
f r = 18r3 2 cos 2 |
D = fr ag: |
||||
9. |
f r = 5r |
3 cos 2 cos 3 |
De = fr ag: |
|||
10. |
f r = 5r2 cos + 2 cos 3 |
|
D = fr ag: |
|||
11. |
f r = r |
5 2 + cos |
De = fr ag: |
|||
12. |
f r = 2r 2 cos |
D = fr ag: |
||||
13. |
f r = 9r |
6 cos 2 |
De = fr ag: |
|||
14. |
f r = 3r2 sin2 + 3 |
D = fr ag: |
||||
15. |
f r = 3r |
4 cos 2 1 |
De = fr ag: |
|||
16. |
f r = 9r cos 2 + 2 |
D = fr ag: |
||||
17. |
f r = 5r |
5 cos 3 cos |
|
De = fr ag: |
||
18. |
f r = 5r3 cos 3 + cos |
D = fr ag: |
||||
19. |
f r = 2r |
5 3 cos |
De = fr ag: |
|||
20. |
f r = 9r4 2 cos 2 |
D = fr ag: |
||||
21. |
f r = 9r |
6 sin2 |
De = fr ag: |
|||
22. |
f r = 2r2 3 + cos |
D = fr ag: |
||||
23. |
f r = 5r |
4 cos 3 + 2 cos |
De = fr ag: |
|||
24. |
f r = 9r3 cos 2 3 |
D = fr ag: |
||||
25. |
f r = 3r |
4 2 + sin2 |
De = fr ag: |
|||
26. |
f r = 2r 2 + cos |
D = fr ag: |
||||
27. |
f r = 3r |
4 3 + cos 2 |
De = fr ag: |
|||
28. |
f r = 5r3 cos 3 + cos |
D = fr ag: |
||||
29. |
f r = 2r |
5 5 + cos |
De = fr ag: |
|||
30. |
f r = 3r2 cos 2 + 3 |
D = fr ag: |
101
. |
|
D |
G |
, w = f!z" -# $7&.
! . . - "D w = f!z"z 2 CI ( D 2 CIf!D" .
2.7.2 ! ". ) w = f!z" | D -@D G @G,@D @G | - . + f!z" -@D -
# , , #
D G
# .
2.7.3 ! ". ) w = f!z" | -DG, @D !", -. + f!z" D , D , ( D G ,G .
) f!z" = u!x y" + iv!x y" | , -D , u!x y" v!x y" | -D.
2.7.5 ! |
- |
". ) u = u!x y" = u!z" |D z = '!w" | -G D. + u = u!'!w""G.
102
. |
|
|
|
|
||||||||
|
v z, | |
|||||||||||
" a |
|
|
|
|
|
|
|
|
|
|
|
|
|
@u |
|
|
@v |
|
|
|
|
|
|
|
z |
|
|
= |
|
|
= g z |
v z |
|
= Z g z ds: |
||||
|
@n# z2@D |
|
@s# z2@D |
|
|
|
|
z2@D |
z0 |
|||
" |
: |
|
|
|
|
|
|
|||||
|
|
|
|
|
|
4v = 0 zz 2 D |
|
|
||||
|
|
|
|
|
8 v |
|
|
= |
g z ds |
|
||
|
|
|
|
|
|
|
|
z2@D |
|
|
|
|
|
|
|
|
|
|
|
|
|
zZ0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
: |
|
|
|
|
|
|
|
|||
v x y - |
(:
z
u x y = zZ0 vxdy vydx + const:
2.7.1. * G * D * w=wz : 1 D = fz : z 2CI Im z 2g * w = 1 + i z + 1-
2 D = fz : z 2 CI 0 Re z 2 Im z 0g *
w = 1=z- |
|
3 D = fz : z 2CI |
jz 3ij 3 Im z 0g * w = 1=z- |
4 D = fz : z 2CI |
0 Im z Re z 2g * w = 1=z: |
. 1 0 w = az + b 1 -
I#* |
C = |
|
f1g |
||||||
|
|
|
|
|
|
I# |
CI |
|
|
C: 2 . |
|
2.7.2 |
|||||||
|
* |
* 5 |
AB * D |
||||||
|
|
|
|
|
|
x |
= t |
|
|
. 2.7.1, . 6 |
|
5 AB : y = 2 |
|
||||||
t +1 1: 7* 5 A0 B0 : |
|
w = |
|||||||
= 1 + i t + i2 + 1 = t 1 + i t + 2 = u t + iv t . . |
- |
||||||||
0 |
|
0 |
|
u = t 1 |
|
|
|
|
|
A |
B |
|
: |
v = t + 2 - t |
+1 |
||||
1: 8 ( |
|
|
v u = 3: |
103
w = 1 + i z + 1
!
. 2.7.1,
G = fw : w 2CI Im w Re w 3g:
2 w = 1=z : |
|
|
" |
w=1=z !CI f1g=CI |
|
" |
" |
# CI |
CI $ |
w = 1=z ! ! % - ' # ( ) (' ' : w1 = 1=z" w = w"1:
. * ( z1 z2 %+ -' # jzj = R, # ( , +- % ( z = 0 jz1j jz2j = R2: / ( % +z1 = R2=z"2 = R2z2=jz2j2:
! # w = 1=z % #
"
# ', ! ! CI - ' # ', !- ( % ( ( z = 1$
) w = 1=z ! +- Re z = x = 1=2a ## u a 2 + v2 = a2 ) w = u + iv ! +- Im z =y =1=2b # # u2 +v + b 2 =b2 . 2.7.1, .
104
w = 1
z
!
w = 1
!z
. 2.7.1,
D w = 1=z . 2.7.1, .
w = 1
!z
. 2.7.1,
|
|
|
! " # |
||||
BC |
|
x = t |
t 2 0. |
||||
|
y = 0 |
||||||
|
|
|
|||||
B0 C0 : |
u = 1=t |
2 t 0 |
|||||
|
|
|
|
|
v = 0 |
|
|
B = 2 $ B0 |
= 1=2 C = 0 $ C0 |
= 1: |
|||||
|
|
|
|
|
|
|
x = 0 |
|
CE : |
y = t - |
|||||
t 0 1: |
|||||||
0 |
0 |
|
u = 0 |
|
|
|
|
C |
E |
: |
v = 1=t 0 |
t 1, |
|||
= 0 |
$ C0 = 1 E = 1 |
$ E0 = 0: |
|
105
|
A x = 2: , x = Re z, |
||||||||
1 |
z + z |
= 2 z = 1=w, ! |
|||||||
w = u +1iv : |
|
|
2 |
|
|
||||
|
1 |
1 1 |
|
|
1 |
||||
2 z + z = 2 |
|
|
|
+ |
|
! = 2 |
2w + w = 2w w |
||
2 |
w |
w |
|||||||
|
u = 2u2 + v2 |
u |
41!2 + v2 = 41!2 : |
||||||
$%& % , |
|
x = 2 ' % ( % ) |
u 14!2 + v2 = 14!2: * ( w = 1=z % ( + ' : % % ) ( % %-
% ) % ) % , % ) , ( !-A , - Im z 0, ' )% + && -%( % ) Im w 0, ( ( ' %. 2.7.1, .
G = fw : w 2CI Re w 0 Im w 0 jw 1=4j 1=4g:
3 2 ' ! ' % D ' w = 1=z %. 2.7.1, .
w = 1
!z
. 2.7.1,
|
|
|
|
|
|
|
|
|
|
|
|
x = t |
|
|
3 %( % ! A & y |
= 0 |
|||||||||||
! |
1 t |
|
0, ' ( |
|
% ) |
% |
|||||||
|
|
u = 1=t |
|
|
|
|
|
|
|
|
|
||
0 |
0 |
: v = 0 |
! 1 t 0, e % % % |
||||||||||
A |
B |
||||||||||||
( A = 1 |
$ A0 = 0 = 0 $ 0 = 1: |
|
|
|
|
|
|||||||
|
4 % ) ! % jz 3ij = 3 '- |
||||||||||||
% ( &, & |
|
|
|
|
|
|
|
||||||
|
|
|
1 |
3i |
= 3 , j1 3iwj = j3wj , |
|
w + |
i |
|
= jwj: |
|
||
|
|
|
|
|
|
|
|||||||
|
|
w |
|
|
|
|
|
3 |
|
|
106
-
CIw |
i=3 0, . . |
|
|||||
Im w = 1=6: |
|
|
|
|
|
|
|
|
x = t |
|
|
0 |
|
0 |
|
! " # EF : y = 0 0 t +1 |
& ' E |
|
F |
|
: |
||
u = 1=t |
0 t +1, =0 $ 0 =+1 F =+1 |
$ F0 =0: |
|||||
v = 0 |
|
|
|
|
|
|
|
|
# # ( . - |
2.7.2+ & , . . G = fw : w 2CI 1=6 Im w 0g:
4+ - & # & D & ' w = 1=z ( . 2.7.1, +.
w = 1
z
!
. 2.7.1,
|
|
|
|
x = t |
! " # ABC : y = t 1 t +1 & - |
||||
0 |
0 |
0 |
u = 1=2t |
|
A |
B |
C |
: v = 1=2t |
1 t +1, . |
, A=1 |
$ A0 =0 =0 $ 0 =1 =1 $ 0 =0: |
! " # EFH | , y x = 2.
0 , y = Im z x = Re z 1 2 |
||||
1 |
(z z3+ |
1 |
(z |
+ z3+ = 2: - & 2 & ' |
|
2 |
|||
2i |
|
|
||
w = 1=z: |
|
|
|
107

1 |
1 |
1 |
|
1 |
1 |
1 |
|
|
|
1 |
|
|
|
|
1 |
|
|
|
|
|
||||||
|
|
|
|
|
|
! |
|
|
|
+ |
|
! = 2 , |
|
w |
w 2 w + w = 2ww , |
|||||||||||
|
2i |
w |
w |
2 |
w |
w |
2i |
|||||||||||||||||||
|
|
|
|
, v u = 2 u |
2 |
2 |
, |
u + |
1 |
! |
2 |
1 |
! |
2 |
1 |
|||||||||||
|
|
|
|
|
|
+ v |
4 |
|
+ v + 4 |
|
= 8: |
|||||||||||||||
|
1+i =4 p |
|
=4: - |
|||||||||||||||||||||||
|
2 |
|||||||||||||||||||||||||
|
! - |
" #! , " .
G = fw : w 2CI jw + 1 + i =4j p2=4 Im w + Re w 0g:
2.7.1. ( ) # * G #" D # w=w z :
1. |
1 D = fz : z 2CI |
Re z 1g w = 1 + i z + 1+ |
|||
|
2 D = fz : z 2CI |
0 Re z 1=2 Im z 0g |
w = 1=z: |
||
2. |
1 D = fz : z 2CI |
Im z 1g w = 2 |
i z + 1+ |
||
|
2 D = fz : z 2CI |
0 Im z 1 |
Re z 0g |
w = 1=z: |
|
3. |
1 D = fz : z 2CI |
Re z 1g w = 1 i z + 1+ |
|||
|
2 D = fz : z 2CI |
1 Re z 0 Im z 0g w = 1=z: |
|||
4. |
1 D = fz : z 2CI |
Re z 2g w = 1 + i z + 1+ |
|||
|
2 D = fz : z 2CI |
jz ij 1 jz 2ij 2g |
w = 1=z: |
||
5. |
1 D = fz : z 2CI |
Im z 1g |
w = 2 i z + 1+ |
||
|
2 D = fz : z 2CI |
jz 1j 1 jz 2j |
2g |
w = 1=z: |
|
6. |
1 D = fz : z 2CI |
Re z 1g w = 1 |
i z + 1+ |
||
|
2 D = fz : z 2CI |
1 Re z 0 Im z 0g w = 1=z: |
|||
7. |
1 D = fz : z 2CI |
Im z 1g w = 2 + i z + 1+ |
|||
|
2 D = fz : z 2CI |
0 Im z 1=2 Re z 0g |
w = 1=z: |
||
8. |
1 D = fz : z 2CI |
Re z 1g w = 1 + i z + 1+ |
|||
|
2 D = fz : z 2CI |
jz + ij 1 jz + 2ij 2g |
w = 1=z: |
||
9. |
1 D = fz : z 2CI |
Re z 2g w = 1 |
i z + 1+ |
||
|
2 D = fz : z 2CI |
0 Re z 1 |
Im z 0g |
w = 1=z: |
|
10. |
1 D = fz : z 2CI |
Im z 1g |
w = 1 + 2i z + 1+ |
108
|
2 D = fz : z 2CI |
0 Re z + Im z 1g w = 1=z: |
||||
11. |
1 D = fz : z 2CI |
Re z 1g |
w = |
1 |
+ 2i z + 1 |
|
|
2 D = fz : z 2CI |
jz + 1j 1 |
jz + 2j 2g |
w = 1=z: |
||
12. |
1 D = fz : z 2CI |
Im z 1g |
w = |
1 2i z + 1 |
||
|
2 D = fz : z 2CI |
1 Im z 0 |
Re z 0g w = 1=z: |
|||
13. |
1 D = fz : z 2CI |
Re z 1g |
w = |
1 2i z + 1 |
||
|
2 D = fz : z 2CI |
1 Re z + Im z 0g |
w = 1=z: |
|||
14. |
1 D = fz : z 2CI |
Re z 2g |
w = |
2 + i z + 1 |
||
|
2 D = fz : z 2CI |
0 Im z Re z 1g w = 1=z: |
||||
15. |
1 D = fz : z 2CI |
Im z 1g |
w = |
1 + i z + 1 |
||
|
2 D = fz : z 2CI |
1 Im z Re z 0g |
w = 1=z: |
|||
16. |
1 D = fz : z 2CI |
Re z 1g |
w = |
1 2i z + 1 |
||
|
2 D = fz : z 2CI |
jz ij 1 |
Im z 0g |
w = 1=z: |
||
17. |
1 D = fz : z 2CI |
Im z 1g |
w = |
1 + 2i z + 1 |
||
|
2 D = fz : z 2CI |
1 Im z 0 |
Re z 0g w = 1=z: |
|||
18. |
1 D = fz : z 2CI |
Re z 1g |
w = |
1 + 2i z + 1 |
||
|
2 D = fz : z 2CI |
1 Re z 2 Im z 0g |
w = 1=z: |
|||
19. |
1 D = fz : z 2CI |
Re z 2g |
w = |
2 i z + 1 |
||
|
2 D = fz : z 2CI |
jz 1j 1 |
Re z 0g |
w = 1=z: |
||
20. |
1 D = fz : z 2CI |
Im z 1g |
w = |
1 i z + 1 |
||
|
2 D = fz : z 2CI |
jz 2ij 2 |
Im z 0g |
w = 1=z: |
||
21. |
1 D = fz : z 2CI |
Re z 1g |
w = |
2 + i z + 1 |
||
|
2 D = fz : z 2CI |
jz 2j 2 |
Re z 0g |
w = 1=z: |
||
22. |
1 D = fz : z 2CI |
Im z 1g |
w = |
1 + i z + 1 |
||
|
2 D = fz : z 2CI |
jz + ij 1 |
Im z 0g |
w = 1=z: |
||
23. |
1 D = fz : z 2CI |
Re z 1g |
w = |
2 i z + 1 |
109
|
2 D = fz : z 2CI |
jz + 2ij 2 |
Im z 0g |
w = 1=z: |
|
24. |
1 D = fz : z 2CI |
Re z 2g |
w = 1 |
2i z + 1 |
|
|
2 D = fz : z 2CI |
2 Im z 1 |
Re z 0g w = 1=z: |
||
25. |
1 D = fz : z 2CI |
Im z 1g |
w = 2 + i z + 1 |
||
|
2 D = fz : z 2CI |
2 Re z 4 Im z 0g |
w = 1=z: |
||
26. |
1 D = fz : z 2CI |
Im z 1g |
w = 1 |
i z + 1 |
|
|
2 D = fz : z 2CI |
1 Re z + Im z 1g |
w = 1=z: |
||
27. |
1 D = fz : z 2CI |
Re z 1g |
w = 1 + i z + 1 |
||
|
2 D = fz : z 2CI |
jz + 1j 1 |
Re z 0g |
w = 1=z: |
|
28. |
1 D = fz : z 2CI |
Im z 1g |
w = 1 2i z + 1 |
||
|
2 D = fz : z 2CI |
0 Re z 1 Im z 0g |
w = 1=z: |
||
29. |
1 D = fz : z 2CI |
Re z 2g |
w = 2 + i z + 1 |
||
|
2 D = fz : z 2CI |
jz + 2j 2 |
Re z 0g |
w = 1=z: |
|
30. |
1 D = fz : z 2CI |
Im z 2g |
w = 2 |
i z + 1 |
|
|
2 D = fz : z 2CI |
0 Im z Re z 1g w = 1=z: |
- ! "# w = w z " - ! $ % & ' ( D ' ( G ) ) * &+ ( ,$ ' ) *$:
1 D = fz : z |
2CI |
jzj 1g G = fw : w 2CI Re w 1g |
|
w i = 1 w 0 = 2 |
|
||
2 D = fz : z |
2CI |
Re z 0 Im z 0g G = fw : w 2CI |
jwj 2 |
Im w 0g w 0 = |
2 w i = 0 |
jwj 1 |
|
3 D = fz : z |
2CI Re z 0 Im z 0g G = fw : w 2CI |
||
Im w Re wg w 0 = p2 1 + i =2 w 1 = 0: |
|
||
. |
|
|
|
. - "# * |
|
az + b |
|
w = cz + d |
. c 6= 0 ad bc 6= 0 |
/,) '* - . |
|
110