Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физ_беременности_реферат.doc
Скачиваний:
1
Добавлен:
23.04.2024
Размер:
271.87 Кб
Скачать

4. Основные функции плаценты

Плацента выполняет следующие основные функции: дыхательную, выделительную, трофическую, защитную и инкреторную. Она выполняет также функции антигенобразования и им­мунной защиты. Большую роль в осуществлении этих функций играют плодные оболочки и околоплодные воды.

Переход через плаценту химических соединений определяется различ­ными механизмами: ультрафильтрацией, простой и облегченной диффузией, активным транспортом, пиноцитозом, трансформацией веществ в ворсинах хориона. Большое значение имеют также растворимость химических соеди­нений в липидах и степень ионизации их молекул.

Процессы ультрафильтрации зависят от величины молекулярной массы химического вещества. Этот механизм имеет место в тех случаях, когда молекулярная масса не превышает 100. При более высокой молекулярной массе наблюдается затрудненный трансплацентарный переход, а при моле­кулярной массе 1000 и более химические соединения практически не проходят через плаценту, поэтому их переход от матери к плоду осуществляется с помощью других механизмов.

Процесс диффузии заключается в переходе веществ из области большей концентрации в область меньшей концентрации. Такой механизм характе­рен для перехода кислорода от организма матери к плоду и СО2 от плода в организм матери. Облегченная диффузия отличается от простой тем, что равновесие концентраций химических соединений по обе стороны плацен­тарной мембраны достигается значительно быстрее, чем этого можно было ожидать на основании законов простой диффузии. Такой механизм доказан для перехода от матери к плоду глюкозы и некоторых других химических веществ.

Пиноцитоз представляет собой такой тип перехода вещества через пла­центу, когда ворсины хориона активно поглощают капельки материнской плазмы вместе с содержащимися в них теми или иными соединениями.

Наряду с этими механизмами трансплацентарного обмена большое зна­чение для перехода химических веществ от организма матери к плоду и в обратном направлении имеет растворимость в липидах и степень ионизации молекул химических агентов. Плацента функционирует как липидный ба­рьер. Это означает, что химические вещества, хорошо растворимые в липи­дах, более активно переходят через плаценту, чем плохо растворимые. Роль ионизации молекул химического соединения заключается в том, что недиссоциированые и неионизированные вещества переходят через плаценту более быстро.

Величина обменной поверхности плаценты и толщина плацентарной мембраны также имеют существенное значение для процессов обмена между организмами матери и плода.

Несмотря на явления так называемого физиологического старения, про­ницаемость плаценты прогрессивно возрастает вплоть до 32-35-й недели беременности. Это в основном обусловлено увеличением числа вновь обра­зованных ворсин, а также прогрессирующим истончением самой плацентарной мембраны (с 33-38 мкм в начале беременности до 3-6 мкм в конце ее).

Степень перехода химических соединений от организма матери к плоду зависит не только от особенностей проницаемости плаценты. Большая роль в этом процессе принадлежит и организму самого плода, его способности избирательно накапливать именно те агенты, которые в данный момент особенно необходимы ему для роста и развития. Так, в период интенсивного гемопоэза возрастает потребность плода в железе, которое необходимо для синтеза гемоглобина. Если в организме матери содержится недостаточное количество железа, то у нее возникает анемия. При интенсивной оссификации костей скелета увеличивается потребность плода в кальции и фосфо­ре, что вызывает усиленный трансплацентарный переход их солей. В этот период беременности у матери особенно ярко выражены процессы обедне­ния ее организма данными химическими соединениями.

Дыхательная функция. Газообмен в плаценте осуществляется путем проникновения кислорода к плоду и выведения из его организма СО2. Эти процессы осуществляются по законам простой диффузии. Плацента не обладает способностью к накоплению кислорода и СО2, поэтому их транс­порт происходит непрерывно. Обмен газов в плаценте аналогичен газооб­мену в легких. Значительную роль в выведении СО2 из организма плода играют околоплодные воды и параплацентарный обмен.

Трофическая функция. Питание плода осуществляется путем транспорта продуктов метаболизма через плаценту.

Белки. Состояние белкового обмена в системе мать-плод обусловлено многими факторами: белковым составом крови матери, состоянием белок-синтезирующей системы плаценты, активностью ферментов, уровнем гор­монов и рядом других факторов. Плацента обладает способностью дезаминировать и переаминировать аминокислоты, синтезировать их из других предшественников. Это обусловливает активный транспорт аминокислот в кровь плода. Содержание аминокислот в крови плода несколько превышает их концентрацию в крови матери. Это указывает на активную роль плаценты в белковом обмене между организмами матери и плода. Из аминокислот плод синтезирует собственные белки, отличные в иммунологическом отно­шении от белков матери.

Липиды. Транспорт липидов (фосфолипиды, нейтральные жиры и др.) к плоду осуществляется после их предварительного ферментативного рас­щепления в плаценте. Липиды проникают к плоду в виде триглицеридов и жирных кислот. Липиды в основном локализуются в цитоплазме синцития ворсин хориона, обеспечивая тем самым проницаемость клеточных мембран плаценты.

Глюкоза. Переходит через плаценту согласно механизму облегченной диффузии, поэтому ее концентрация в крови плода может быть выше, чем у матери. Плод также использует для образования глюкозы гликоген печени. Глюкоза является основным питательным веществом для плода. Ей принад­лежит также очень важная роль в процессах анаэробного гликолиза.

Вода. Через плаценту для пополнения экстрацеллюлярного пространства и объема околоплодных вод проходит большое количество воды. Вода на­капливается в матке, тканях и органах плода, плаценте и амниотической жидкости. При физиологической беременности количество околоплодных вод ежедневно увеличивается на 30-40 мл. Вода необходима для правиль­ного обмена веществ в матке, плаценте и в организме плода. Транспорт воды может осуществляться против градиента концентрации.

Электролиты. Обмен электролитов происходит трансплацентарно и через амниотическую жидкость (параплацентарно). Калий, натрий, хлориды, гидрокарбонаты свободно проникают от матери к плоду и в обратном направлении. Кальций, фосфор, железо и некоторые другие микроэлементы способны депонироваться в плаценте.

Витамины. Весьма важную роль плацента играет в обмене витаминов. Она способна накапливать их и осуществляет регуляцию их поступления к плоду. Витамин А и каротин депонируются в плаценте в значительном количестве. В печени плода каротин превращается в витамин А. Витамины группы В накапливаются в плаценте и затем, связываясь с фосфорной кислотой, переходят к плоду. В плаценте содержится значительное количе­ство витамина С. У плода этот витамин в избыточном количестве накапли­вается в печени и надпочечниках. Содержание витамина D в плаценте и его транспорт к плоду зависят от содержания витамина в крови матери. Этот витамин регулирует обмен и транспорт кальция в системе мать-плод. Ви­тамин Е, как и витамин К, не переходит через плаценту. Следует иметь в виду, что синтетические препараты витаминов Е и К переходят через пла­центу и обнаруживаются в крови пуповины.

Ферменты. Плацента содержит многие ферменты, участвующие в обмене веществ. В ней обнаружены дыхательные ферменты (оксидазы, каталаза, дегндрогеназы и др.). В тканях плаценты имеется сукцннатдегидрогеназа, которая участвует в процессе переноса водорода при анаэробном гликолизе. Плацента активно синтезирует универсальный источник энергии АТФ.

Из ферментов, регулирующих углеводный обмен, следует указать ами­лазу, лактазу, карбоксилазу и др. Белковый обмен регулируется с помощью таких ферментов, как НАД- и НАДФдиафоразы. Специфическим для пла­центы является фермент — термостабильная щелочная фосфотаза (ТЩФ). На основании показателей концентрации этого фермента в крови матери можно судить о функции плаценты во время беременности. Другим специ­фическим ферментом плаценты является окситоциназа. В плаценте содер­жится ряд биологически активных веществ системы гистамин-гистаминаза, ацетилхолин-холинэстераза и др. Плацента также богата различными фак­торами свертывания крови и фибринолиза.

Эндокринная функция. При физиологическом течении беремен­ности существует тесная связь между гормональным статусом материнского организма, плацентой и плодом. Плацента обладает избирательной способ­ностью переносить материнские гормоны. Так, гормоны, имеющие сложную белковую структуру (соматотропин, тиреотропный гормон, АКТГ и др.), практически не переходят через плаценту. Проникновению окситоцина через плацентарный барьер препятствует высокая активность в плаценте фермента окситоциназы. Переходу инсулина от организма матери к плоду, по-видимому, препятствует его высокая молекулярная масса.

В противоположность этому стероидные гормоны обладают способнос­тью переходить через плаценту (эстрогены, прогестерон, андрогены, глюкокортикоиды). Тиреоидные гормоны матери также проникают через плацен­ту, однако трансплацентарный переход тироксина осуществляется более медленно, чем трийодтиронина.

Наряду с функцией по трансформации материнских гормонов плацента сама превращается во время беременности в мощный эндокринный орган, который обеспечивает наличие оптимального гормонального гомеостаза как у матери, так и у плода.

Одним из важнейших плацентарных гормонов белковой природы явля­ется плацентарный лактоген (ПЛ). По своей структуре ПЛ близок к гормону роста аденогипофиза. Гормон практически целиком поступает в материн­ский кровоток и принимает активное участие в углеводном и липидном обмене. В крови беременной ПЛ начинает обнаруживаться очень рано — с 5-й недели, и его концентрация прогрессивно возрастает, достигая макси­мума в конце гестации. ПЛ практически не проникает к плоду, а в амниотической жидкости содержится в низких концентрациях. Этому гормону уделяется важная роль в диагностике плацентарной недоста­точности.

Другим гормоном плаценты белкового происхождения является хорионический гонадотропин (ХГ). По своему строению и биологическому дейст­вию ХГ очень сходен с лютеинизирующим гормоном аденогипофиза. При диссоциации ХГ образуются две субъединицы (α и β). Наиболее точно функцию плаценты отражает β-ХГ. ХГ в крови матери обнаруживают на ранних стадиях беременности, максимальные концентрации этого гормона отмечаются в 8-10 нед беременности. В ранние сроки бере­менности ХГ стимулирует стероидогенез в желтом теле яичника, во второй половине — синтез эстрогенов в плаценте. К плоду ХГ переходит в ограни­ченном количестве. Полагают, что ХГ участвует в механизмах половой дифференцировки плода. На определении ХГ в крови и моче основаны гормональные тесты на беременность: иммунологическая реакция, реакция Ашгейма-Цондека, гормональная реакция на самцах лягушек и др.

Плацента наряду с гипофизом матери и плода продуцирует пролактин. Физиологическая роль плацентарного пролактина сходна с таковой ПЛ гипофиза.

Кроме белковых гормонов, плацента синтезирует половые стероидные гормоны (эстрогены, прогестерон, кортизол).

Эстрогены (эстрадиол, эстрон, эстриол) продуцируются плацентой в возрастающем количестве, при этом наиболее высокие концентрации этих гормонов наблюдаются перед родами. Около 90% эстрогенов плаценты представлены эстриолом. Его содержание служит отражением не только функции плаценты, но и состояния плода. Дело в том, что эстриол в плаценте оРрячустся из андрогенов надпочечников плода, поэтому кон­центрация эстриола в крови матери отражает состояние как плода, так и плаценты. Эти особенности продукции эстриола легли в основу эндокрин­ной теории о фетоплацентарной системе.

Прогрессирующим увеличением концентрации во время беременности характеризуется также эстрадиол. Многие авторы считают, что именно этому гормону принадлежит решающее значение в подготовке организма беремен­ной к родам.

Важное место в эндокринной функции плаценты принадлежит синтезу прогестерона. Продукция этого гормона начинается с ранних сроков беременности, однако в течение первых 3 мес основная роль в синтезе прогестерона принадлежит желтому телу и лишь затем эту роль берет на себя плацента. Из плаценты прогесте­рон поступает в основном в кровоток матери и в значительно меньшей сте­пени в кровоток плода.

В плаценте вырабатывается глюкокортикоидный стероид кортизол. Этот гормон также продуцируется в надпочечниках плода, поэтому кон­центрация кортизола в крови матери отражает состояние, как плода, так и плаценты (фетоплацентарной системы).

До настоящего времени открытым остается вопрос о продукции АКТГ и ТТГ плацентой.

Иммунная система плаценты.

Плацента представля­ет собой своеобразный иммунный ба­рьер, разделяющий два генетически чужеродных организма (мать и плод), поэтому при физиологически проте­кающей беременности иммунного конфликта между организмами мате­ри и плода не возникает. Отсутствие иммунологического конфликта между организмами матери и плода обуслов­лено следующими механизмами:

  • отсутствие или незрелость антигенных свойств плода;

  • наличие иммунного барьера между матерью и плодом (плацента);

  • иммунологические особенности организма матери во время беремен­ности.

Барьерная функция плаценты. Понятие "плацентарный барьер" включает в себя следующие гистологические образования: синцитиотрофобласт, цитотрофобласт, слой мезенхимальных клеток (строма ворсин) и эн­дотелий плодового капилляра. Плацентарный барьер в какой-то степени можно уподобить гематоэнцефалическому барьеру, который регулирует про­никновение различных веществ из крови в спинномозговую жидкость. Однако в отличие от гематоэнцефалического барьера, избирательная проницаемость которого характеризуется переходом различных веществ только в одном на­правлении (кровь  цереброспинальная жидкость), плацентарный барьер ре­гулирует переход веществ и в обратном направлении, т.е. от плода к матери.

Трансплацентарный переход веществ, постоянно находящихся в крови матери и попавших в нее случайно, подчиняется разным законам. Переход от матери к плоду химических соединений, постоянно присутствующих в крови матери (кислород, белки, липиды, углеводы, витамины, микроэле­менты и др.), регулируется достаточно точными механизмами, в результате чего одни вещества содержатся в крови матери в более высоких концентрациях, чем в крови плода, и наоборот. По отношению к веществам, случайно попавшим в материнский организм (агенты химического произ­водства, лекарственные препараты и т.д.), барьерные функции плаценты выражены в значительно меньшей степени.

Проницаемость плаценты непостоянна. При физиологической беремен­ности проницаемость плацентарного барьера прогрессивно увеличивается вплоть до 32-35-й недели беременности, а затем несколько снижается. Это обусловлено особенностями строения плаценты в различные сроки беремен­ности, а также потребностями плода в тех или иных химических соедине­ниях.

Ограниченные барьерные функции плаценты в отношении химических веществ, случайно попавших в организм матери, проявляются в том, что через плаценту сравнительно легко переходят токсичные продукты химичес­кого производства, большинство лекарственных препаратов, никотин, алко­голь, пестициды, возбудители инфекций и т.д. Это создает реальную опас­ность для неблагоприятного действия этих агентов на эмбрион и плод.

Барьерные функции плаценты наиболее полно проявляются только в физиологических условиях, т.е. при неосложненном течении беременности. Под воздействием патогенных факторов (микроорганизмы и их токсины, сенсибилизация организма матери, действие алкоголя, никотина, наркотиков) барьерная функция плаценты нарушается и она становится проницаемой даже для таких веществ, которые в обычных физиологических условиях через нее проходят в ограниченных количествах.