4 курс / Оториноларингология / Оториноларингология_учебник_для
.pdf
волосков при прямолинейных ускорениях является моментом трансформации механической энергии в электрическую в нейроэпителиальных волосковых клетках. Эллиптический и сферический мешочки соединены между собой посредством тонкого канальца - ductus utriculosaccularis, который имеет ответвление - эндолимфатический проток (ductus endolimphaticus). Проходя в водопроводе преддверия, эндолимфатический проток выходит на заднюю поверхность пирамиды и там слепо заканчивается эндолимфатическим мешком (saccus endolimphaticus), представляющим собой расширение, образованное дупликатурой твердой мозговой оболочки.
Рис. 5.15. Схема вестибулярных рецепторов:
а - ампулярный рецептор: 1 - просвет ампулы полукружного протока; 2 - ампулярный гребешок; 3 - просвет эллиптического мешочка; 4 - мембрана статоконий; 5 - соединительнотканные тяжи; 6 - киноцилий; б - статокониев рецептор: 1 - мембрана статоконий; 2 - рецепторные клетки
Таким образом, вестибулярные сенсорные клетки расположены в пяти рецепторных областях: по одной в каждой ампуле трех полукружных каналов и по одной в двух мешочках преддверия каждого уха. В нервных рецепторах преддверия и полукружных каналов к каждой чувствительной клетке подходит не одно (как в улитке), а несколько нервных волокон, поэтому гибель одного из этих волокон не влечет за собой гибели клетки.
Кровоснабжение внутреннего уха осуществляется через лабиринтную артерию (a.
labyrinthi), являющуюся ветвью базилярной артерии (a. basilaris) или ее ветви от передней нижней мозжечковой артерии (рис. 5.16). Во внутреннем слуховом проходе лабиринтная артерия делится на три ветви: преддверную (a. vestibularis), преддверно-улитковую (a. vestibulocochlearis) и улитковую (a. cochlearis).
Больше книг на нашем telegram-канале https://t.me/medknigi
Рис. 5.16. Кровоснабжение лабиринта:
1 - позвоночная артерия; 2 - базилярная артерия; 3 - передняя нижняя мозжечковая артерия; 4 - артерия лабиринта
Особенности кровоснабжения лабиринта состоят в том, что ветви лабиринтной артерии не имеют анастомозов с сосудистой системой среднего уха, рейсснерова мембрана лишена капилляров, а в области ампулярных и отолитовых рецепторов подэпителиальная капиллярная сеть находится в непосредственном контакте с клетками нейроэпителия. К нейроэпителиальным волосковым клеткам спирального органа кровеносные сосуды не подходят, их питание осуществляется опосредованно через прилежащие к ним трофические клетки.
Венозный отток из внутреннего уха идет по трем путям: венам водопровода улитки, венам водопровода преддверия и венам внутреннего слухового прохода.
ИННЕРВАЦИЯ ВНУТРЕННЕГО УХА
Слуховой анализатор (рис. 5.17). Волосковые клетки кортиева органа синаптически связаны с периферическими отростками биполярных клеток спирального ганглия (ganglion
spirale), расположенного в основании спиральной пластинки улитки. Центральные отростки биполярных нейронов спирального ганглия являются волокнами слуховой (улитковой) порции VIII нерва (n. cochleovestibularis), который проходит через внутренний слуховой проход и в области мостомозжечкового угла входит в мост. На дне четвертого желудочка VIII нерв делится на два корешка: верхний вестибулярный и нижний улитковый.
Волокна улиткового корешка заканчиваются в латеральном углу ромбовидной ямки на клетках вентрального ядра (nucl. ventralis) и дорсального улиткового ядра (nucl. dorsalis). Таким образом, клетки спирального ганглия вместе с периферическими отростками, идущими к нейроэпителиальным волосковым клеткам органа Корти, и центральными отростками, заканчивающимися в ядрах моста, составляют I нейрон слухового анализатора. На уровне кохлеарных ядер расположен ряд ядерных образований, принимающих участие в формировании дальнейших путей для проведения слуховых раздражений: ядро трапециевидного тела, верхняя олива, ядро боковой петли. От вентрального и дорсального ядер начинается II нейрон слухового анализатора. Меньшая часть волокон этого нейрона идет по одноименной стороне, a большая часть в виде striae acusticae перекрещиваются и переходят на противоположную сторону моста, заканчиваясь в оливе и трапециевидном теле. Волокна III нейрона в составе боковой петли идут к ядрам четверохолмия и медиального коленчатого тела, откуда уже волокна IV нейрона после второго частичного перекреста направляются в височную долю мозга и оканчиваются в корковом отделе слухового анализатора, располагаясь преимущественно в поперечных височных извилинах Гешля.
Больше книг на нашем telegram-канале https://t.me/medknigi
Рис. 5.17. Схема проводящих путей слухового анализатора: 1 - кора височной доли большого мозга; 2 - медиальное коленчатое тело; 3 - бугры четверохолмия; 4 - латеральная петля; 5 - улитковые ядра; 6 - верхние оливные ядра; 7 - спиральный узел; 8 - кортиев орган
Проведение импульсов от кохлеарных рецепторов по обеим сторонам мозгового ствола объясняет то обстоятельство, что одностороннее нарушение слуха возникает только в случае поражения среднего и внутреннего уха, а также кохлеовестибулярного нерва и его ядер в мосту. При одностороннем поражении латеральной петли, подкорковых и корковых слуховых центров импульсы от обоих кохлеарных рецепторов проводятся по непораженной стороне в одно из полушарий и расстройства слуха может не быть. 
Слуховая система обеспечивает восприятие звуковых колебаний, проведение нервных импульсов к слуховым нервным центрам, анализ получаемой информации.
Вестибулярный анализатор. Рецепторные клетки вестибулярного анализатора контактируют с окончаниями периферических отростков биполярных нейронов вестибулярного ганглия (gangl. vestibulare), расположенного во внутреннем слуховом проходе. Центральные отростки этих нейронов формируют вестибулярную порцию преддверно-улиткового (VIII) нерва, который проходит во внутреннем слуховом проходе, выходит в заднюю черепную ямку и в области мостомозжечкового угла внедряется в вещество мозга. В вестибулярных ядрах продолговатого мозга, в дне четвертого желудочка, заканчивается I нейрон. Вестибулярный ядерный комплекс включает четыре ядра: латеральное, медиальное, верхнее и нисходящее. От каждого ядра идет с преимущественным перекрестом II нейрон.
Высокие адаптационные возможности вестибулярного анализатора обусловлены наличием множества ассоциативных путей ядерного вестибулярного комплекса (рис. 5.18). С позиций клинической анатомии важно отметить пять основных связей вестибулярных ядер с различными образованиями центральной и периферической нервной системы.
Больше книг на нашем telegram-канале https://t.me/medknigi
*Вестибулоспинальные связи. Начинаясь от латеральных ядер продолговатого мозга, в составе вестибулоспинального тракта, они проходят в передних рогах спинного мозга, обеспечивая связь вестибулярных рецепторов с мышечной системой. *Вестибулоглазодвигательные связи осуществляются через систему заднего продольного пучка: от медиального и нисходящего ядер продолговатого мозга идет перекрещенный путь, а от верхнего ядра - неперекрещенный, к глазодвигательным ядрам. *Вестибуловегетативные связи осуществляются от медиального ядра к ядрам блуждающего нерва, ретикулярной фармации, диэнцефальной области.
Рис. 5.18. Схема ассоциативных связей вестибулярного анализатора: 1 - лабиринт; 2 - спиральный ганглий; 3 - мозжечок; 4 - кора полушарий большого мозга; 5 - ядра глазодвигательных нервов; 6 - ретикулярная формация; 7 - вестибулярные ядра в продолговатом мозге; 8 - спинной мозг
*Вестибуломозжечковые пути проходят во внутреннем отделе нижней ножки мозжечка и связывают вестибулярные ядра с ядрами мозжечка.
*Вестибулокортикальные связи обеспечиваются системой волокон, идущих от всех четырех ядер к зрительному бугру. Прерываясь в последнем, далее эти волокна идут к височной доле мозга, где вестибулярный анализатор имеет рассеянное представительство. Кора и мозжечок выполняют регулирующую функцию по отношению к вестибулярному анализатору.
Посредством указанных связей реализуются разнообразные сенсорные, вегетативные и соматические вестибулярные реакции.
5.2. КЛИНИЧЕСКАЯ ФИЗИОЛОГИЯ УХА
В ухе расположены в одной костной капсуле рецепторы двух органов (анализаторов) - слуха и равновесия. Оба они относятся к механорецепторам и характеризуются определенной сходностью восприятия энергии раздражения. В то же время более молодой в филогенетическом и онтогенетическом отношениях слуховой аппарат уха отличается большей сложностью организации. Чувствительные элементы слухового анализатора, в отличие от вестибулярных, относятся к экстероцепторам, т.е. воспринимают энергию из внешней среды. Рассмотрим особенности функционирования органов слуха и равновесия.
Больше книг на нашем telegram-канале https://t.me/medknigi
ФУНКЦИЯ ОРГАНА СЛУХА
Слух человека является сложным процессом, для реализации которого необходимо проведение звуковой волны, преобразование ее в электрические нервные импульсы, передача их в нервные центры, анализ и интеграция звуковой информации. Соответственно различают такие функции органа слуха, как звукопроведение и звуковосприятие. Адекватным раздражителем органа слуха является звук, поэтому для освещения основных функциональных особенностей системы необходимо знакомство с некоторыми понятиями акустики.
Основные физические понятия акустики. Звук представляет собой механические колебания упругой среды, распространяющиеся в виде волн в воздухе, жидкости и твердых телах. Источником звука может быть любой процесс, вызывающий местное изменение давле-
ния или механическое напряжение в среде. С точки зрения физиологии под звуком понимают такие механические колебания, которые, воздействуя на слуховой рецептор, вызывают в нем определенный физиологический процесс, воспринимаемый как ощущение звука.
Звуковая волна характеризуется синусоидальными, т.е. периодическими колебаниями (рис. 5.19). При распространении в определенной среде звук представляет собой волну с фазами сгущения (уплотнения) и разрежения. Различают волны поперечные - в твердых телах, и продольные - в воздухе и жидких средах. Скорость распространения звуковых колебаний в воздухе составляет 332 м/с, в воде - 1450 м/с. Одинаковые состояния звуковой волны - участки сгущения или разрежения - называются фазами. Расстояние между средним и крайним положением колеблющегося тела
называется амплитудой колебаний, а между одинаковыми фазами - длиной волны. Число колебаний (сжатий или разрежений) в единицу времени определяется понятием частоты звука. Единицей измерения частоты звука является герц (Гц), обозначающий число колебаний в секунду.
Различают высокочастотные (высокие) и низкочастотные (низкие) звуки. Низкие звуки, при которых фазы далеко отстоят друг от друга, имеют большую длину волны, высокие звуки с близким расположением фаз - маленькую (короткую).
Рис. 5.19. Звуковая волна:
p - звуковое давление; t - время; λ - длина волны
Фаза и длина волны имеют важное значение в физиологии слуха. Так, одним из условий оптимального слуха является приход звуковой волны к окнам преддверия и улитки в разных фазах, и это анатомически обеспечивается звукопроводящей системой среднего уха. Высокие звуки с малой длиной волны приводят в колебание небольшой (короткий) столб лабиринтной жидкости (перилимфы) в основании улитки (здесь они воспринимаются), низкие - с большой
длиной волны - распространяются до верхушки улитки (здесь они воспринимаются). Это обстоятельство важно для уяснения современных теорий слуха.
По характеру колебательных движений различают:
•чистые тоны;
•сложные тоны;
•шумы.
Больше книг на нашем telegram-канале https://t.me/medknigi
Гармонические (ритмичные) синусоидальные колебания создают чистый, простой звуковой тон. Примером может быть звук камертона. Негармонический звук, отличающийся от простых звуков сложной структурой, называется шумом. Частоты разнообразных колебаний, создающих шумовой спектр, относятся к частоте основного тона хаотично, как различные дробные числа. Восприятие шума часто сопровождается неприятными субъективными ощущениями. Сложные тоны имеют упорядоченное отношение к основному тону, а ухо способно анализировать сложный звук. Каждый сложный звук разлагается на простые синусоидальные составляющие.
Способность звуковой волны огибать препятствия называется дифракцией. Низкие звуки с большой длиной волны обладают лучшей дифракцией, чем высокие с короткой длиной волны. Отражение звуковой волны от встречающихся на ее пути препятствий называется эхом. Многократное отражение звука в закрытых помещениях от различных предметов носит название реверберации. Явление наложения отраженной звуковой волны на первичную звуковую волну получило название интерференции. При этом может наблюдаться усиление или ослабление звуковых волн. При
прохождении звука через наружный слуховой проход происходит его интерференция и звуковая волна усиливается.
Явление, когда звуковая волна одного колеблющегося предмета вызывает соколебательные движения другого предмета, называется резонансом. Резонанс может быть острым, когда собственный период колебаний резонатора совпадает с периодом воздействующей силы, и тупым, если периоды колебаний не совпадают. При остром резонансе колебания затухают медленно, при тупом - быстро. Важно, что колебания структур уха, проводящих звуки, затухают быстро; это устраняет искажение внешнего звука, поэтому человек может быстро и последовательно принимать все новые и новые звуковые сигналы. Некоторые структуры улитки обладают острым резонансом, и это способствует различению двух близко расположенных частот.
Основные свойства слухового анализатора - его способность различать высоту звука, громкость и тембр. Ухо человека воспринимает звуковые частоты от 16 до 20 000 Гц, что составляет 10,5 октавы. Колебания с частотой менее 16 Гц называются инфразвуком, а выше 20 000 Гц
- ультразвуком. Инфразвук и ультразвук в обычных условиях человеческое ухо не слышит, однако они воспринимаются, что определяется при специальном исследовании. Весь диапазон воспринимаемых ухом человека частот делят на несколько частей: тоны до 500 Гц называются низкочастотными, от 500
до 3000 Гц - среднечастотными, от 3000 до 8000 Гц - высокочастотными.
Наибольшей чувствительностью ухо человека обладает к звукам в зоне 1000-4000 Гц. Это так называемые речевые частоты, имеющие значение для восприятия человеческого голоса.
Ниже 1000 Гц и выше 4000 Гц чувствительность (возбудимость) уха значительно понижается. Так, для частот 200 и 10 000 Гц пороговый звук имеет интенсивность в 1000 раз большую, чем для речевых частот. Различная чувствительность к звукам низкой и высокой частоты в какой-то степени объясняется резонансными свойствами наружного слухового прохода. Определенную роль играют при этом и свойства чувствительных клеток отдельных завитков улитки.
С возрастом слух постепенно ухудшается, смещается в сторону низких частот и зона наибольшей чувствительности. Так, если в возрасте 20-40 лет она находится в области 3000 Гц, то к 60 годам и старше смещается в область 1000 Гц.
Чем больше амплитуда звука, тем лучше слышимость, однако эта закономерность сохраняется до определенного предела, за которым начинается звуковая перегрузка. Минимальная энергия звуковых колебаний, способная вызвать ощущение звука, называется порогом слухового ощущения. Порог слухового ощущения определяет чувствительность уха: чем выше порог, тем хуже чувствительность и наоборот.
Больше книг на нашем telegram-канале https://t.me/medknigi
Различают интенсивность звука - физическое понятие его силы, и громкость - субъективную оценку силы звука. Одну и ту же интенсивность звука при нормальном и пониженном слухе люди воспринимают с различной громкостью.
Единицей измерения уровня громкости звука, степени усиления или ослабления его принято считать децибел (дБ), т.е. 0,1 часть бела.
Термин «бел» введен в честь изобретателя телефона Александра Бела и обозначает отношение силы исследуемого звука к пороговому ее уровню. Децибел - 0,1 десятичного логарифма отношения силы данного звука к пороговому уровню. Введение такой единицы при акустических измерениях дало возможность интенсивность всех звуков области слухового восприятия выразить в относительных единицах от 0 до 140 дБ. Рассчитано, что усиление звука на 6 дБ соответствует усилению звукового давления в 2 раза, усиление на 20 дБ - в 10 раз, на 40 дБ - в 10 000 раз и т.д. Сила шепотной речи составляет примерно 30 дБ, разговорной 40-60 дБ, громкой речи - 80 дБ, крик у уха - 110 дБ, шум реактивного двигателя - 120 дБ. Для человека максимальным порогом силы звука является интенсивность 120-130 дБ, звук такой силы вызывает боль в ушах.
Слуховой анализатор способен различать надпороговые звуки по их частоте и силе. Для количественного выражения этой способности определяется тот минимальный прирост по частоте или силе звука, который различается ухом. Величина, на которую требуется усилить раздражитель, чтобы вызвать едва заметное увеличение ощущения, находится в зависимости от первоначальной величины этого раздражителя, т.е. прирост всегда составляет определенную часть первоначальной исходной величины раздражителя. Поэтому дифференциальным (разностным) порогом частоты звука называется отношение еле заметного ощущаемого прироста в частоте к первоначальной частоте звука. Эти пороги, наименьшие в зоне частот 500-5000 Гц, составляют 0,003 Гц. Это означает, что изменение частоты звука всего на 3 Гц при тоне в 1000 Гц уже различается ухом как другая высота. При тоне 4000 Гц требуется прирост 12 Гц. В диапазоне 50 Гц различительная способность находится в пределах 0,01%.
Способность дифференцировать прибавку звука по силе, т.е. субъективно различать появление новой интенсивности, также зависит от исходной величины раздражителя и составляет его определенную часть. Дифференциальный порог силы звука (ДП) является минимальным в зоне речевых частот (здесь он равен в среднем 0,8 дБ) и возрастает в зоне низких частот.
Важная особенность уха - его способность к анализу сложных звуков. Звучащее тело, например струна, колеблется не только
целиком, давая основной тон, но и своими частями (половинкой, четвертью и т.д.), колебания которых дают обертоны (гармоники), что вместе с основным тоном определяет тембр, т.е. определенную окраску звука. 
Одной из особенностей слухового анализатора является его способность при постороннем шуме воспринимать одни звуки хуже, чем другие. Такое взаимное заглушение одного звука другим получило название маскировки. Это явление нашло широкое применение в аудиологии, когда при исследовании одного уха маскирующий тон подают на другое с целью его заглушения. Обычно низкие звуки обладают повышенной способностью маскировать более высокие тоны.
Понятием адаптация определяют физиологическое приспособление органа слуха к силе звукового раздражителя. Известная роль в этом принадлежит мышцам барабанной полости и другим механизмам. Адаптация создает оптимальный настрой анализатора на восприятие звука данной силы и частоты. Наиболее существенным является изменение чувствительности: под влиянием сильного звукового раздражителя чувствительность уха снижается, а в тишине, напротив, обостряется. Выключение звукового раздражителя сопровождается, как правило, быстрым восстановлением чувствительности уха. Процессы
Больше книг на нашем telegram-канале https://t.me/medknigi
адаптации протекают по-разному при ушных болезнях, и изучение их представляет ценность для дифференциальной диагностики.
От адаптации отличают утомление (понижение чувствительности) слухового анализатора, которое происходит при его перераздражении и сопровождается медленным восстановлением. Этот процесс в отличие от адаптации всегда снижает работоспособность органа слуха. После отдыха явления утомления проходят, однако при частых и длительных воздействиях звуков и шума большой интенсивности развиваются стойкие необратимые нарушения слуховой функции. Заболевания уха предрасполагают к более быстрому развитию утомления слуха.
Ототопика - это важное свойство слухового анализатора, позволяющее определять направление источника звука. Ототопика возможна лишь при наличии двух слышащих ушей, т.е. при бинауральном слухе. Способность локализовать направление, откуда идет звук, обеспечивается следующими условиями. Во-первых, имеет значение разница в силе, с которой звук воспринимается тем и другим ухом.
Ухо, которое находится ближе к источнику звука, воспринимает его более громким, второе же ухо находится при этом в звуковой тени. Экранирующее действие головы особенно резко проявляется для высоких звуков, поэтому разница в силе играет ведущую роль при распознавании направления именно высоких звуков. 
Для локализации низких звуков главную роль играет временной фактор - различие времени поступления звука к одному и другому уху. Максимальная разница наблюдается при нахождении источника звука сбоку, на линии оси, соединяющей оба уха. Человек способен различать минимальный промежуток времени, равный 0,063 мс. Расстояние между ушами в среднем равняется 21 см. Способность определять направление звука пропадает, если длина волны меньше удвоенного этого расстояния. Поэтому ототопика высоких звуков затруднена. Чем больше расстояние между приемниками звука, тем точнее определение его направления.
ФУНКЦИИ НАРУЖНОГО, СРЕДНЕГО И ВНУТРЕННЕГО УХА
Периферический отдел слухового анализатора выполняет две основные функции:
•звукопроведение, т.е. доставку звуковой энергии к рецепторному аппарату улитки;
•звуковосприятие - трансформация физической энергии звуковых колебаний в нервное возбуждение. Соответственно этим функциям различают звукопроводящий и звуковоспринимающий аппараты (рис.
5.20).
Звукопроведение осуществляется при участии ушной раковины, наружного слухового прохода, барабанной перепонки, цепи слуховых косточек, жидкостей внутреннего уха, мембраны окна улитки, а также рейсснеровой, базилярной и покровной мембран (рис. 5.21).
Основной путь доставки звуков к рецептору - воздушный. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают ее колебания. В фазе повышенного давления барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молоточка благодаря подвешивающим связкам смещается кнаружи, а длинный отросток наковальни - кнутри, смещая таким образом кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение звуковой волны происходит по пери-
Больше книг на нашем telegram-канале https://t.me/medknigi
Рис. 5.20. Схема звукопроводящей и звуковоспринимающей систем: 1 - наружное ухо; 2 - среднее ухо; 3 - внутреннее ухо; 4 - проводящие пути; 5 - корковый центр; А - звукопроводящий аппарат; Б - звуковоспринимающий аппарат
Рис. 5.21. Схема передачи звуковых колебаний к спиральному органу
лимфе лестницы преддверия, через геликотрему передается на барабанную лестницу и в конечном счете вызывает смещение мембраны окна улитки в сторону барабанной полости. Колебания перилимфы через преддверную мембрану Рейсснера передаются на эндолимфу и базилярную мембрану, на которой находится спиральный орган с чувствительными волосковыми клетками. Распространение звуковой волны в перилимфе возможно благодаря наличию эластичной
мембраны окна улитки, а в эндолимфе - вследствие эластичного эндолимфатического мешка, сообщающегося с эндолимфатическим пространством лабиринта через эндолимфатический проток.
Воздушный путь доставки звуковых волн во внутреннее ухо является основным. Однако существует и другой путь проведения звуков к кортиеву органу - костно-тканевой, когда звуковые колебания попадают на кости черепа, распространяются в них и доходят до улитки.
Различают инерционный и компрессионный типы костного проведения (рис. 5.22). При воздействии низких звуков череп колеблется как целое, и благодаря инерции цепи слуховых косточек получается относительное перемещение капсулы лабиринта относительно стремени, что вызывает смещение столба жидкости в улитке и возбуждение спирального органа. Это инерционный тип костного проведения звуков. Компрессионный тип имеет место при передаче высоких звуков, когда энергия звуковой волны вызывает периодическое сжатие волной капсулы лабиринта, что приводит к выпячиванию мембраны окна улитки и в меньшей степени основания стремени. Так же как и воздушная проводимость, инерционный путь передачи звуковых волн нуждается в нормальной подвижности мембран обоих окон. При компрессионном типе костной проводимости достаточно подвижности одной из мембран.
Больше книг на нашем telegram-канале https://t.me/medknigi
Колебание костей черепа можно вызвать прикосновением к нему звучащего камертона или костного телефона аудиометра. Костный путь передачи приобретает особое значение при нарушении передачи звуков через воздух.
Рис. 5.22. Инерционный (а) и компрессионный (б) механизмы костного проведения
Рассмотрим роль отдельных элементов органа слуха в проведении звуковых волн.
Ушная раковина играет роль своеобразного коллектора, направляющего высокочастотные звуковые колебания во вход в наружный слуховой проход. Ушные раковины имеют также определенное значение в вертикальной ототопике. При изменении положения ушных раковин вертикальная ототопика искажается, а при выключении их путем введения в наружные слуховые проходы полых трубочек полностью исчезает. Однако при этом не нарушается способность локализовать источники звука по горизонтали.
Наружный слуховой проход является проводником звуковых волн к барабанной перепонке. Ширина и форма наружного слухового прохода не играют особой роли при звукопроведении. Однако полное заращение просвета наружного слухового прохода или его обтурация препятствуют распространению звуковых волн и приводят к заметному ухудшению слуха.
В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, и это обеспечивает стабильность упругих свойств барабанной перепонки. Кроме того, в наружном слуховом проходе происходит избирательное усиление на 10-12 дБ звуковых волн частотой около 3 кГц. С физической точки зрения это объясняется резонансными свойствами слухового прохода, имеющего длину около 2,7 см, что составляет 1/4 длины волн резонансной частоты.
ПОЛОСТЬ СРЕДНЕГО УХА И СЛУХОВАЯ ТРУБА
Для нормального функционирования системы звукопроведения необходимо, чтобы по обе стороны барабанной перепонки было одинаковое давление. При несоответствии давления в полостях среднего уха и в наружном слуховом проходе натяжение барабанной перепонки меняется, акустическое (звуковое) сопротивление возрастает и слух понижается. Выравнивание давления обеспечивается вентиляционной функцией слуховой трубы. При глотании или зевании слуховая труба открывается и становится проходимой для воздуха. Учитывая, что слизистая оболочка среднего уха постепенно поглощает воздух, нарушение вентиляционной функции слуховой трубы ведет к повышению наружного давления над давлением в среднем ухе, что вызывает втяжение барабанной перепонки внутрь. Это при-
водит к нарушению звукопроведения и вызывает патологические изменения в среднем ухе.
Помимо вентиляционной, слуховая труба выполняет также защитную и дренажную функции. Защитная функция слуховой трубы обеспечивается слизистой оболочкой, которая в хрящевом отделе особенно богата слизистыми железами. Секрет этих желез содержит лизоцим, лактоферин, иммуноглобулины - все эти факторы препятствуют проникновению возбудителей в барабанную полость. Дренажную функцию
Больше книг на нашем telegram-канале https://t.me/medknigi
