
- •Медицинская генетика
- •Оглавление:
- •Глава I: Краткая история медицинской генетики………………………….........6
- •Глава II: Нуклеиновые кислоты
- •2.3: Этапы реализации генетической информации
- •Глава III: Цитологические основы наследственности.
- •Глава IV: Закономерности наследования признаков
- •4.1: Основные понятия и термины современной генетики.
- •4.3: Закономерности наследования
- •Глава V: Особенности наследования признаков при отклонении
- •Глава VI: Генетические, биологические и
- •Глава VII: Медицинские аспекты изменчивости……………………………….95
- •Глава IX: Наследственные болезни человека………………………………..…121
- •Глава X: Профилактика наследственных заболеваний и
- •Глава XI: Значение знаний генетики для практической медицины……...…151
- •11.2: Биологические и социальные аспекты генетической
- •11.3: Достижения генетики в диагностике
- •Введение
- •Краткая история медицинской генетики.
- •Глава II Нуклеиновые кислоты. Генетический код. Программирование синтеза белка в клетке.
- •2.1 Открытие нуклеиновых кислот. Доказательства роли днк.
- •2.2.Строение нуклеиновых кислот.
- •2.3 Этапы реализации генетической информации. Транскрипция. Процессинг.
- •2.4. Генетический код. Свойства кода.
- •2.5 Трансляция. Биосинтез белка.
- •2.6 Репарационные процессы днк.
- •2.7 Задачи по молекулярной генетики:
- •2.8 Алгоритм решения типовых задач
- •Цитологические основы наследственности. Метафазные хромосомы. Кариотип человека.
- •3.1 Наследственное вещество клетки
- •3.2.Правила хромосом. Кариотип человека.
- •Слева — женщины, справа — мужчины; вверху — хромосомные комплексы, внизу — идиограммы
- •3.3. Гетеро-, эухроматин и половой хроматин
- •Глава IV Закономерности наследования признаков при моно- ди- и полигибридном скрещивании.
- •4.1. Основные понятия и термины современной генетики. Влияние генотипической среды и факторов внешней среды на проявление признаков.
- •4.2. Плейотропное (множественное) действие генов.
- •4.3 Закономерности наследования при моногибридном скрещивании
- •I закон: Закон единообразия гибридов I поколения:
- •II закон: Закон расщепления:
- •4.4. Закономерности при ди- и полигибридном скрещивании
- •4.5 Задачи по теме: «Закономерности наследования»
- •4.6 Алгоритм решения типовых задач
- •Глава V Особенности наследования признаков при отклонении от закономерностей законов Менделя
- •5.1 Множественный аллелизм.
- •5.2. Промежуточное наследование
- •5.3. Эпистатическое взаимодействие генов
- •5.4. Комплементарное взаимодействие генов
- •5.5. Полимерное взаимодействие генов
- •5.6. Сцепленное наследование
- •5.7. Нарушение полного сцепления
- •5.8 Задачи по теме: «Особенности наследования признаков при отклонених от закономерностей наследования»
- •5.9 Алгоритмы решения типовых задач
- •1. Определите вероятность заболевания детей в семье, где один из супругов гетерозиготен, а другой нормален в отношении анализируемого признака.
- •2. Определите вероятность заболевания детей от брака двух гетерозиготных родителей.
- •Глава VI Генетические, биологические и социальные аспекты пола.
- •6.1 Генетика и биология пола
- •6.2 Половые генетические аномалии.
- •6.3 Соматические половые аномалии
- •6.4 Задачи по теме «Генетика пола»
- •6.5 Алгоритм решения типовых задач
- •Глава VII Медицинские аспекты изменчивости
- •7.1 Модификационная изменчивость.
- •7.2 Комбинативная изменчивость
- •7.3 Мутационная изменчивость. Классификация мутиций.
- •I. По причинам: спонтанные и индуцированные.
- •II. По мутировавшим клеткам: генеративные и соматические.
- •III. По изменению генетического материала мутации подразделяют на следующие: генные, хромосомные перестройки, геномные.
- •IV. По изменению фенотипа:
- •V. По исходу для организма:
- •Глава VIII Генетика человека
- •8.1 Методы изучения генетики человека.
- •8.2 Графическое изображение родословных
- •8.3 Типы наследования. Критерии наследования
- •8.4. Задачи по теме: «Генетика человека»
- •8.5. Алгоритм решения типовых задач
- •Глава IX Наследственные болезни человека
- •9.1 Классификация Наследственных болезней
- •9.2 Врожденные заболевания
- •9.3 Хромосомные болезни
- •9.4 Синдромы с числовыми аномалиями половых хромосом.
- •9.5 Синдромы с числовыми аномалиями аутосом
- •9.6 Генные болезни
- •Глава X Профилактика наследственных заболеваний и врожденных пороков развития
- •10.1 Медико-генетическое консультирование
- •10.2 Основные принципы консультирования
- •10.3 Этапы консультирования
- •10.4 Методы пренатальной диагностики.
- •Глава IX Значение знаний генетики для практической медицины
- •11.1 Генная и клеточная инженерия. Биотехнология.
- •11.2 Биологические и социальные аспекты генетической экспертизы
- •11.3 Достижения генетики в диагностике и профилактикенаследственной патологии
- •Список литературы
Глава II Нуклеиновые кислоты. Генетический код. Программирование синтеза белка в клетке.
2.1 Открытие нуклеиновых кислот. Доказательства роли днк.
В 1869г. швейцарский биохимик Ф. Мишер впервые описал вещество, содержащееся в ядрах клеток, и назвал его нуклеином, а позже оно было переименовано в нуклеиновые кислоты (от лат. nucleus - ядро). К ним относятся дезоксирибонуклеиновая кислота — ДНК (в ее состав входит сахар дезоксирибоза) и рибонуклеиновая кислота — РНК (входит сахар рибоза).
В
1928г. бактериолог Ф. Гриффитс изучал
бескапсульные невирулентные пневмококки
(не вызывающие заболевания) и вирулентные
в полисахаридной капсуле
(вызывающие воспаление легких) для
получения вакцины против пневмококка.
Он показал, что при инъекции мышам живых
бескапсульных пневмококков
мыши выживали, а при введении живых
капсульных — погибали.
При введении смеси убитых при нагревании
капсульных и живых
Рис.1 Схема опыта, демонстрирующего явление трансформации
бескапсульных пневмококков мыши погибали, из них удалось выделить живых капсульных пневмококков. Таким образом, способность образовывать капсулу перешла от убитого капсульного пневмококка к живому бескапсульному (рис.1).
В 1944г. О. Эвери с сотрудниками выяснили природу этого загадочного явления. Фактором, превращающим непатогенные (бескапсульные) в патогенные (капсульные) пневмококки, является ДНК, а само явление назвали трансформацией (от лат. transformatio — преобразование, превращение). Следовательно, трансформация — это преобразование признака у одного штамма бактерии в результате проникновения в нее ДНК другого штамма. Явление трансформации стало одним из основных доказательств того, что ДНК является носителем генетической (наследственной) информации.
Позже,
в 1952г. Дж. Ледербергом и Н. Циндером была
выявлена передача генетического
материала от одного штамма бактерий
другому с помощью бактериофага, это
было названо трансдукцией (от лат.
transductio
-перемещение, передача) (рис.2). U-образная
трубка в нижней части разделена
бактериальным фильтром. В одну половину
были помещены штаммы сальмонеллы (S.
typhi
murium),
нe
синтезирующие аминокислоту триптофан
(Т-), а в другую — сальмонеллы, синтезирующие
триптофан (Т+) и бактериофаги. После
инкубации среди сальмонелл, не
синтезирующих триптофан, были выделены
бактерии Т+. Это объясняется тем, что
бактериофаги проходили через бактериальный
фильтр и переносили части ДНК от бактерии
Т+ к бактериям Т-.
Рис. 2. Схема опыта, демонстрирующего явление трансдукции:
1 — бактериальные клетки; 2 — ген Т+;3- i — бактериофаг; 4 — фильтр
2.2.Строение нуклеиновых кислот.
Исследование структуры молекулы ДНК проводилось многими учеными. И только в 1953г., используя все накопленные биологические и физико-химические знания, Д. Уотсон и Ф. Крик открыли двухцепочечную спиральную (пространственную) структуру молекулы ДНК.
Каждая цепь — это полимер, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из сахара дезоксирибозы, остатка фосфорной кислоты и одного из четырех азотистых оснований (аденин, гуанин, тимин, цитозин). Две цепи ДНК соединяются слабыми водородными связями между азотистыми основаниями по принципу комплементарности: аденин дополняется тимином, гуанин — цитозином (рис. 3).
Рис.3 Схема строения ДНК
Перед делением клетки ДНК способна удваиваться (реплицироваться) Сначала с помощью фермента ДНК-полимеразы разрываются слабые водородные связи между двумя цепями ДНК, а затем к каждой уже отдельной цепочке достраиваются по принципу комплементарности нуклеотиды (А—Т; Г—Ц), образуются уже две двухцепочечные молекулы ДНК. Репликация ДНК обеспечивает высочайшую точность воспроизведения генетической ин формации в поколениях клеток и организмов в целом.
Кроме ДНК, в клетке имеются РНК.
Молекула РНК — полимер, ее мономерами являются нуклеотиды. В отличие от ДНК рибонуклеиновая кислота — это:
одноцепочечная молекула;
вместо сахара дезоксирибозы в РНК входит сахар рибоза;
в состав нуклеотидов входит азотистое основание не тимин, а урацил
состоит из меньшего количества нуклеотидов, чем ДНК.
В зависимости от выполняемых функций выделяют несколько видов РНК; и-РНК (информационная), или м-РНК (матричная), — переносит информацию о структуре белка от ДНК к рибосомам. На долю и-РНК приходите примерно 0,5—1,0 % от общего содержания РНК клетки; т-РНК (транспортная) — переносит аминокислоты в рибосомы. Из общего количества РНК клетки на долю т-РНК приходится около 10 %; р-РНК (рибосомальная) — составляет существенную часть структуры рибосомы. На долю р-РНК приходится около 90 % от общего количества РНК клетки.
ДНК выполняет разнообразные функции:
1) хранит генетическую (наследственную) информацию, записанную в виде последовательности нуклеотидов;
2) передает наследственную информацию из ядра в цитоплазму. Для этого с гена снимается копия в виде и-РНК и переносится к рибосомам — месту синтеза белка;
3) передает наследственную информацию от материнской клетки к дочерним клеткам, для чего перед делением клетки ДНК реплицируется.
Далее рассмотрим подробнее каждое из трех указанных положений.
ДНК — носитель генетической информации. Впервые понятие ген было сформулировано в 1941г. Д. Бидлом и Э. Татумом: ген - это участок молекулы ДНК, несущий информацию об одном белке-ферменте. В настоящее время геном называют участок молекулы ДНК, кодирующий первичную структуру полипептида, и понятие о гене расширилось. Известны гены, кодирующие:
а) белки-ферменты;
б) структурные белки;
в) т-РНК (много копий);
г) р-РНК (много копий);
д) регуляторные (или функциональные) — включают и выключают другие гены;
е) гены-модуляторы - усиливают или подавляют проявление других генов.